黄金科学技术 ›› 2022, Vol. 30 ›› Issue (2): 209-221.doi: 10.11872/j.issn.1005-2518.2022.02.162
Xuebin XIE(),Tao LIU(),Huan ZHANG
摘要:
声发射源的准确分类识别是声发射地压监测预报预警研究的重要基础。针对矿山井下围岩体声发射事件信号和采掘作业噪声信号分类识别问题,提出了一种基于改进完备总体经验模态分解和深度卷积神经网络(DCNN)的智能识别分类方法。首先,对信号进行改进CEEMDAN降噪处理,即利用相关性系数阈值和排列熵(PE)阈值剔除伪分量和噪声分量;然后,利用DCNN对降噪后的信号自动提取高维特征;最后,将特征用于softmax分类器分类识别,实现智能化井下信号源多分类。研究表明:改进CEEMDAN能够有效剔除伪分量及噪声分量;相比其他机器学习方法,改进CEEMDAN-DCNN方法具有准确率高和稳定性较好等优点。信号源识别分类方法研究为地压监测预警预报提供了重要的基础数据,准确的灾害预警预报可为矿山井下作业人员和设备提供安全保障。
中图分类号:
Albert A, Nii A,2010. A criterion of selecting relevant intrinsic mode functions in empirical mode decomposition[J].Advances in Adaptive Data Analysis,2(1):1-24. | |
Chen Bingrui, Wu Hao, Chi Xiuwen,et al,2019. Real-time recognition algorithm for microseismic signals of rock failure based on STA/LTA and its engineering application[J].Rock and Soil Mechanics,40(9):3689-3696. | |
Cheng Tiedong, Wu Yiwen, Luo Xiaoyan,et al,2019. Method for feature extraction and classification of mine microseismic signals based on EWT_Hankel_SVD[J].Chinese Journal of Scientific Instrument,40(6):181-191. | |
Dong Longjun, Sun Daoyuan, Li Xibing,et al,2016.A statistical method to identify blasts and microseismic events and its engineering application[J].Chinese Journal of Rock Me-chanics and Engineering,35(7):1423-1433. | |
Dong Longjun, Tang Zheng, Li Xibing,et al,2020.Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform[J].Journal of Central South University,27(10):3078-3089. | |
Gao Junyu, Yang Xiaoshan, Zhang Tianzhu,et al,2016.Robust vision tracking method via deep learning[J].Chinese Journal of Computers,39(7):1419-1434. | |
Hao Yongmei, Du Zhanghao, Yang Wenbin,et al,2019. Pipeline leakage signal recognition based on improved ELMD and multi-scale entropy[J].Chinese Journal of Safety Scie-nce,29(8):105-111. | |
He Li, Zheng Zaoxian, Xiang Fengtao,et al,2021. Advances in text classification technology based on deep learning[J]. Computer Engineering,47(2):1-11. | |
Hu Jianqing, Chen Huipeng, Cheng Zhe,et al,2019.Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J].Journal of Mechanical Engin-eering,55(7):9-18. | |
Jiang Wenwu, Yang Zuolin, Xie Jianmin,et al,2015. Application of FFT spectrum analysis to identify microseismic signals[J].Science and Technology Review,33(2):86-90. | |
Kortstrom J, Uski M, Tiira T,2016.Automatic classification of seismic events within a regional seismograph network[J].Computers and Geosciences,87:22-30. | |
Li Hong, Liu Fang, Yang Shuyuan,et al,2016.Remote sensing image fusion based on deep support value learning networks[J].Chinese Journal of Computers,39(8):1583-1596. | |
Li Ting,2017.Research in Locomotive Bearing Fault Diagnosis Method Based on Signal Modal Decomposition[D].Xi’an:Chang’an University. | |
Li Wei,2017.Feature extraction and classification method of mine microseismic signals based on LMD and pattern recognition[J]. Journal of China Coal Society,42(5):1156-1164. | |
Liao Zhiqin, Wang Liguan, He Zhengxiang,2020.Feature extraction and classification of mine microseismic signals based on EEMD and correlation dimension[J]. Gold Science and Technology,28(4):585-594. | |
Liu Jianpo, Li Yuanhui, Zhang Fengpeng,et al,2013. Stability analysis of rockmass based on acoustic emission monitoring in deep stope[J].Journal of Mining and Safety Engineering,30(2):243-250. | |
Peng P A, He Z X, Wang L G,et al,2020.Automatic classification of microseismic records in underground mining:A deep learning approach[J]. IEEE Access,8:17863-17876. | |
Peng Yunsai, Xia Fei, Yuan Bo,et al,2020. Fault diagnosis of traction battery pack based on improved convolution neural network and information fusion[J].Automotive Engineering,42(11):1529-1535. | |
Wu Z H, Huang N E,2009.Ensemble empirical mode decomposition:A noise assisted data analysis method[J].Advances in Adaptive Data Analysis,1:1-41. | |
Zhao Guoyan, Deng Qinglin, Li Xibing,et al,2017. Recognition of microseismic waveforms based on EMD and morphological fractal dimension[J]. Journal of Central South University(Science and Technology),48(1):162-167. | |
Zheng Jinde, Cheng Junsheng, Yang Yu,2013.Modified EEMD algorithm and its applications[J].Journal of Vibration and Shock,32(21):21-26. | |
Zhou Feiyan, Jin Linpeng, Dong Jun,2017. A review of convolutional neural networks[J].Chinese Journal of Computers,40(6):1229-1251. | |
Zhu Quanjie, Jiang Fuxing, Yu Zhengxing,et al,2012. Study on energy distribution characters about blasting vibration and rock fracture microseismic signal[J].Chinese Journal of Rock Mechanics and Engineering,31(4):723-730. | |
陈炳瑞,吴昊,池秀文,等,2019.基于STA/LTA岩石破裂微震信号实时识别算法及工程应用[J].岩土力学,40(9):3689-3696. | |
程铁栋,吴义文,罗小燕,等,2019.基于EWT_Hankel_SVD的矿山微震信号特征提取及分类方法[J].仪表仪器学报,40(6):181-191. | |
董陇军,孙道元,李夕兵,等,2016.微震与爆破事件统计识别方法及工程应用[J].岩石力学与工程学报,35(7):1423-1433. | |
董陇军,唐正,李夕兵,等,2020.基于卷积神经网络与原始波形的微震与爆破事件辨识方法[J].中南大学学报,27(10):3078-3089. | |
高君宇,杨小汕,张天柱,等,2016.基于深度学习的鲁棒性视觉跟踪方法[J].计算机学报,39(7):1419-1434. | |
郝永梅,杜璋昊,杨文斌,等,2019.基于改进ELMD和多尺度熵的管道泄漏信号识别[J].中国安全科学学报,29(8):105-111. | |
何力,郑灶贤,项凤涛,等,2021.基于深度学习的文本分类技术研究进展[J].计算机工程,47(2):1-11. | |
胡茑庆,陈徽鹏,程哲,等,2019.基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报,55(7):9-18. | |
江文武,杨作林,谢建敏,等,2015.FFT频谱分析在微震信号识别中的应用[J].科技导报,33(2):86-90. | |
李红,刘芳,杨淑媛,等,2016.基于深度支撑值学习网络的遥感图像融合[J]. 计算机学报,39(8):1583-1596. | |
李婷,2017.基于信号模态分解的机车轴承故障诊断方法研究[D].西安:长安大学. | |
李伟,2017.基于LMD和模式识别的矿山微震信号特征提取及分类方法[J].煤炭学报,42(5):1156-1164. | |
廖智勤,王李管,何正祥,2020.基于EEMD和关联维数的矿山微震信号特征提取和分类[J].黄金科学技术,28(4):585-594. | |
刘建坡,李元辉,张凤鹏,等,2013.基于声发射监测的深部采场岩体稳定性分析[J].采矿与安全工程学报,30(2):243-250. | |
彭运赛,夏飞,袁博,等,2020.基于改进CNN和信息融合的动力电池组故障诊断方法[J]. 汽车工程,42(11):1529-1535. | |
赵国彦,邓青林,李夕兵,等,2017. 基于EMD和形态分形维数的微震波形识别[J]. 中南大学学报(自然科学版),48(1):162-167. | |
郑近德,程军圣,杨宇,2013.改进的 EEMD 算法及其应用研究[J].振动与冲击,32(21):21-26. | |
周飞燕,金林鹏,董军,2017.卷积神经网络研究综述[J].计算机学报,40(6):1229-1251. | |
朱权洁,姜福兴,于正兴,等,2012.爆破震动与岩石破裂微震信号能量分布特征研究[J].岩石力学与工程学报,31(4):723-730. |
[1] | 李筱, 许钧, 张成旭, 隋来伦, 王在勇. 基于CWM-TOPSIS模型的金属矿山企业安全管控能力评价[J]. 黄金科学技术, 2024, 32(1): 100-108. |
[2] | 张君, 杨清平, 刘芳芳, 张金钟, 徐刚强, 李晓松. 深井规模化开采矿山与分布式微震监测系统设计研究[J]. 黄金科学技术, 2023, 31(4): 659-668. |
[3] | 蓝升传,陶干强,房智恒,曾庆田,王史文,朱忠华. 基于LoRa和物联网技术的矿井环境监测系统设计[J]. 黄金科学技术, 2023, 31(1): 144-152. |
[4] | 邵良杉,闻爽爽. 基于GRU神经网络的巷道平均风速获取研究[J]. 黄金科学技术, 2021, 29(5): 709-718. |
[5] | 毕林,周超,姚鑫. 基于视频序列的矿卡司机不安全行为识别[J]. 黄金科学技术, 2021, 29(1): 14-24. |
[6] | 王牧帆,罗周全,于琦. 基于 Stacking 模型的采空区稳定性预测[J]. 黄金科学技术, 2020, 28(6): 894-901. |
[7] | 廖智勤, 王李管, 何正祥. 基于EEMD和关联维数的矿山微震信号特征提取和分类[J]. 黄金科学技术, 2020, 28(4): 585-594. |
[8] | 党明智,张君,贾明涛. 黄土坡铜锌矿微震监测技术应用与灾害预警方法研究[J]. 黄金科学技术, 2020, 28(2): 246-254. |
[9] | 随晓丹,罗周全,秦亚光,王玉乐,彭东. 基于小波分解的尾矿坝浸润线预测方法研究[J]. 黄金科学技术, 2019, 27(1): 137-143. |
[10] | 张二洋,陈建宏. 基于Surpac矿山设计软件及虚幻引擎实现的矿山虚拟现实漫游系统[J]. 黄金科学技术, 2017, 25(4): 93-98. |
[11] | 刘晓明,赵君杰,彭平安,毕林,代碧波. 有效微震信号自动识别技术研究[J]. 黄金科学技术, 2017, 25(3): 84-91. |
[12] | 聂兴信,张国丹. 基于熵值法—突变理论的地下矿山紧急避险系统可靠性研究[J]. 黄金科学技术, 2016, 24(6): 72-77. |
[13] | 王婷玉,罗周全,秦亚光,孙杨. 主溜井垮塌三维探测及可视化分析与计算[J]. 黄金科学技术, 2016, 24(1): 97-101. |
[14] | 尹土兵,王品,张鸣鲁. 基于AHP及模糊综合评判的地下金属矿山安全分析与评价[J]. 黄金科学技术, 2015, 23(3): 60-66. |
[15] | 秦亚光,罗周全,周吉明,汪伟,孙杨. 采空区可视化集成系统信息管理研究与应用[J]. 黄金科学技术, 2015, 23(2): 57-62. |
|