img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (3): 315-323.doi: 10.11872/j.issn.1005-2518.2022.03.176

• 采空区专栏 • 上一篇    下一篇

大型复杂采空区群的稳定性数值分析及隐患区域预测

李杰林(),高乐,杨承业,周科平   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2021-11-24 修回日期:2021-02-27 出版日期:2022-06-30 发布日期:2022-09-14
  • 作者简介:李杰林(1982-),男,湖南宁远人,博士,副教授,从事金属矿山开采、采空区处理及矿山岩石力学等研究工作。lijielin@163.com
  • 基金资助:
    中南大学研究生自主探索创新项目“基于三维激光扫描点云数据的岩体工程结构体智能识别方法研究”(2020zzts713);金属矿山安全与健康国家重点实验室开放课题“深部高应力巷道围岩结构面与危险块体自动识别方法研究”(2020-JSKS?SYS-06)

Numerical Analysis of Stability of Large Complex Goaf Group and Prediction of Hidden Danger Area

Jielin LI(),Le GAO,Chengye YANG,Keping ZHOU   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2021-11-24 Revised:2021-02-27 Online:2022-06-30 Published:2022-09-14

摘要:

大型采空区灾害存在突发性与破坏范围大等特点,如何对采空区灾害进行有效的预防和控制是采空区隐患治理的重要工作。以某矿山为背景,利用井下无人机三维激光扫描系统对采空区进行精细探测,并利用Geomagic对模型进行优化,然后利用FLAC3D进行采空区稳定性分析,确定了大型复杂采空区的隐患区域;将圈定的隐患区域与现场采空区实际冒落情况进行对比,验证了采空区空间结构演化结果与数值分析结果相吻合,证实了该数值分析方法的可靠性。最后基于采空区三维激光扫描结果,再次对采空区进行数值分析,重新圈定采空区的隐患区域。研究结果为矿山采空区安全隐患识别和治理措施的制定提供了科学依据。

关键词: 大型采空区群, 三维激光扫描, 无人机, 数值计算, 隐患治理

Abstract:

The governance of large and complex goaf groups is a long-term process.Aiming at the mined-out area groups at different control stages,the formulation of scientific and reasonable control plans plays a vital role in the safety of mine production.After years of mining in an underground mine,a large number of mined-out areas have been formed.Due to the long existence of the mined-out areas,the upper and lower middle sections of some mined-out areas and adjacent panels have caving through,forming a large and complex group of mined-out areas,which seriously threatens the safe production of the mine.At present,numerical simulation is one of the effective methods to analyze the stability of the goaf.However,in the process of numerical analysis,for complex and large goaf groups,there is a direct conversion of the three-dimensional laser point cloud data into a computable grid model.Difficulties such as huge number of grids,long calculation time,inability to converge or even calculation.In order to obtain a calculable high-precision goaf group model,first use 3D laser scanning to scan and detect the goaf group to obtain an accurate 3D model of the goaf.Due to the large amount of point cloud data from the 3D laser scanning,it is passed through Geomagic-Midas Coupling modeling,processing the model under the condition of ensuring that the basic shape of the model is not distorted,and obtaining a computable numerical model of the goaf group.Then use FLAC3D to perform numerical calculations on the goaf group,according to the stress cloud diagram,displacement cloud diagram and plasticity area distribution map,preliminary analysis of the entire goaf group.And at the same time,according to the displacement instability criterion,the roof hidden danger areas of No.1 large goaf and No.3 medium goaf are determined.The simulation calculation results were compared with the site caving detection results verifies the reliability of the numerical simulation method.Due to the occurrence of local caving,the roof stress of the goaf group is redistributed,so the secondary numerical simulation of the goaf group after the caving was carried out,and the scope of the hidden danger area was predicted.The research results provide a scientific basis for the identification of safety hazards and the formulation of control measures in the mine goaf.

Key words: large-scale goaf group, 3D laser scanning, unmanned aerial vehicle, numerical calculation, hidden danger treatment

中图分类号: 

  • TD325.3

表1

采空区统计及分类"

采空区编号体积/m3类型采空区编号体积/m3类型
1672 843大型143 744

小型

小型

小型

小型

小型

小型

小型

小型

小型

小型

小型

小型

2234 525

中型

中型

153 539
3212 618163 332
461 840

小型

小型

小型

小型

小型

小型

小型

小型

小型

小型

173 077
558 802182 863
657 808192 741
751 875202 712
846 410212 592
927 612222 584
1024 308232 563
1118 301242 496
125 529252 073
134 365合计1 511 152

图1

采空区群三维实体模型"

图2

采空区初始模型"

图3

三角片优化"

图4

采空区模型处理结果"

表2

岩体物理参数"

岩体类别密度/(kg·m-3抗拉强度/MPa内聚力/MPa内摩擦角/(°)剪切模量/GPa体积模量/GPa
变钠质熔岩2.930.2302.67950.294.6376.449
磁铁矿3.050.9713.54547.156.0839.237

图5

采空区稳定性分析云图"

表3

大型复杂采空区群顶板位移失稳判据"

顶板下沉位移顶板稳定性
<10 mm基本无影响
10~40 mm顶板相对稳定
40~75 mm顶板极易破坏
>75 mm顶板破坏

图6

1号和3号采空区顶板隐患区域"

图7

冒落范围探测结果"

图8

冒落后采空区群模型"

图9

采空区冒落后的稳定性分析云图"

图10

采空区顶板隐患区域"

Chen Guangfei, Luo Changfan, Zhong Lianxiang,et al,2019.Stability analysis and treatment scheme selection of goaf based on RHINO-FLAC3D [J].Mining Research and Development,39(9):30-35.
Chen X, Li H T, Wang Q,et al,2016.A study to determine the minimum theoretical thickness of permanent sealing wall for goaf using FLAC 3D Software[J].International Journal of Simulation: Systems,Science & Technology,17(38):29.1-29.9.
Guo Jiayi, Hu Jingbo, Chen Peng,et al,2021.Geological characteristics and genesis of Nanlao tin polymetallic deposit in Yunnan [J].Mineral Exploration,12(5):1137-1144.
Guo Qing, Zhang Wei, Li Jielin,et al,2021.Application of UAV 3D laser scanning technology in Dahongshan iron mine [J].Modern Mining,37(3):160-162.
He Rongxing, Han Zhiyong, Zhou Yanjun,et al,2020.Analysis on disaster characteristics and preventive measures of goaf in metal and non-metal mines[J].Mining Research and Development,40(9):33-38.
He Zanbi,2021.Application of 3D laser scanning technology in the measurement of goaf metal mine [J].China New High Science and Technology,(6):126-127.
Kong Xuewei, Xu Peiliang, Yang Bajiu,et al,2021.Numerical simulation analysis on goaf stability of an iron mine [J].Modern Mining,37(3):209-212.
Li Hongfei, Wang Weiping, Xiao Yigai,et al,2019.Stability analysis of acyual measured goaf group based on Faro-3DMine and Midas-FLAC3D coupling technology [J].Nonferrous Metals(Mining Section),71(5):14-18.
Li Jianhong, Huang Xin, Ma Anfeng,et al,2019.Stability risk assessment of ground above abandoned mines by FLAC [J].Soil Engineering and Foundation,33(1):62-65.
Li Yang, Ren Yuqi, Wang Nan,et al,2021.Structure form and evolution characteristics of collapsed roof in goaf [J].Journal of China Coal Society,46(12):3771-3789.
Li Zuodong, Zhao Zhenhua, Yuan Hui,et al,2021.Numerical simulation of influence range for mined-out area in iron mine,Jinan [J].Urban Geology,16(2):199-203.
Liu H D, Zhu H, Huang Y W,2015.Stability research on Guocun goaf area at middle route project of south-to-north water diversion[J].Rock and Soil Mechanics,36:519-524.
Liu Hailin, Wang Weiping, He Chengyao,et al,2018.Present situation and development trend of goaf treatment techno-logy in metal and non-metal underground mines[J].Modern Mining,34(6):1-7,12.
Liu Mingjiang, Yu Can, Wang Dewen,et al,2020.Application of three dimensional scanning technology for goaf detection in Tangdan copper mine[J].Modern Mining,36(4):27-29.
Ma Wei,2021.Middle-deep prospecting characteristics and deep exploration analysis of metal ore resources in Anshan area,Liaoning Province[J].World Nonferrous Metals,(11):59-60.
Pan W D, Zhang S P, Liu Y,2020.Safe and efficient coal mining below the goaf: A case study[J]. Energies,13(4):864-874.
Song Jia, Chen Junzhi, Wang Minghua,2020.Numerical simulation study on mining of ore body in lower part of goaf in an iron mine[J].Industrial Minerals and Processing,49(6):7-11.
Wang Wei,2021.Stability analysis of complex goaf based on Flac3D [J].Gold,42(6):41-46.
Wang Yueqing, Hou Kepeng, Shang Xiaoguang,2019.Ground pressure activity law of deep mining in a copper mine based on FLAC3D [J].Mining and Metallurgy,28(4):14-23.
Wei Wenpeng, Liang Dongqiang, Feng Sicheng,et al,2020.An analysis of stability of goaf group in Daxin manganese mine on 3Dmine-Rhino-Ansys-Flac3d [J].China’s Manganese Industry,38(4):70-74.
Ye Guangxiang, Wang Liu, Zhang Shubiao,et al,2017.Study on the safe recovery technique of pillars of complicated multi-layer goafs [J].Metal Mine,46(6):61-65.
陈光飞,罗昌繁,钟连祥,等,2019.基于RHINO-FLAC3D的采空区稳定性分析及治理方案选择[J].矿业研究与开发,39(9):30-35.
郭甲一,胡静波,陈鹏,等,2021.云南南捞锡多金属矿地质特征及矿床成因[J].矿产勘查,12(5):1137-1144.
郭庆,张玮,李杰林,等,2021.无人机三维激光扫描技术在大红山铁矿的应用[J].现代矿业,37(3):160-162.
何荣兴,韩智勇,周颜军,等,2020.金属非金属矿山采空区灾害特征分析及预防措施[J].矿业研究与开发,40(9):33-38.
何赞碧,2021.三维激光扫描技术在金属矿山采空区测量中的应用[J].中国高新科技,(6):126-127.
孔学伟,徐培良,杨八九,等,2021.某铁矿采空区稳定性的数值模拟分析[J].现代矿业,37(3):209-212.
李鸿飞,汪为平,肖益盖,等,2019.基于Faro-3DMine及Midas-FLAC3D耦合技术的实测采空区群稳定性分析[J].有色金属(矿山部分),71(5):14-18.
李建红,黄鑫,马安锋,等,2019.基于FLAC的采空区风险评价研究[J].土工基础,33(1):62-65.
李杨,任玉琦,王楠,等,2021.采空区垮落顶板形态及其演化特征研究[J].煤炭学报,46(12):3771-3789.
李作栋,赵振华,袁辉,等,2021.济南市某铁矿采空区影响范围数值模拟[J].城市地质,16(2):199-203.
刘海林,汪为平,何承尧,等,2018.金属非金属地下矿山采空区治理技术现状及发展趋势[J].现代矿业,34(6):1-7,12.
刘明江,余璨,汪德文,等,2020.三维激光扫描技术在汤丹铜矿复杂采空区探测中的应用[J].现代矿业,36(4):27-29.
马巍,2021.辽宁鞍山地区金属矿资源中深部找矿特征及深层勘查分析[J].世界有色金属,(11):59-60.
宋佳,陈俊智,王明华,2020.某铁矿采空区下部矿体开采数值模拟研究[J].化工矿物与加工,49(6):7-11.
王伟,2021.基于Flac3D的复杂采空区稳定性分析[J].黄金,42(6):41-46.
王悦青,侯克鹏,尚晓光,2019.基于FLAC3D对某铜矿深部开采地压活动规律研究[J].矿冶,28(4):14-23.
韦文蓬,梁东强,冯思成,等,2020.基于3Dmine-Rhino-Ansys-Flac3d大新锰矿采空区群稳定性分析[J].中国锰业,38(4):70-74.
叶光祥,王柳,张树标,等,2017.复杂空区群条件下矿柱安全回收技术研究[J].金属矿山,46(6):61-65.
[1] 王史文, 王晟, 凌炜佳, 朱忠华, 杨鑫源, 沙文忠, 杨家宏. 基于无人机航测的自然崩落法采矿地表塌陷规律研究[J]. 黄金科学技术, 2024, 32(4): 654-665.
[2] 赵晓明, 李想, 李杰林, 杨彤飞, 郑佳晨, 杨博, 李长军. 巷道岩体结构面“人工+半自动”识别方法及应用研究[J]. 黄金科学技术, 2023, 31(5): 773-784.
[3] 张浩,卿黎,邱士利,寇永渊,郭赟林,夏胜衍. 三维激光扫描在隧洞围岩结构信息获取中的应用研究[J]. 黄金科学技术, 2023, 31(2): 313-322.
[4] 李杰林,白德威,杨承业,张玮,张孝平. 基于三维激光扫描点云数据的地下巷道岩体结构面识别及稳定性分析[J]. 黄金科学技术, 2022, 30(3): 343-351.
[5] 李杰林,杨承业,彭朝智,周科平,刘锐凯. 三维激光扫描技术在地下巷道岩体结构面识别的应用[J]. 黄金科学技术, 2021, 29(2): 236-244.
[6] 陈刚,马玲,龚红胜. 基于立方定律的断层流—热耦合数值计算方法[J]. 黄金科学技术, 2020, 28(6): 846-858.
[7] 张兵兵,喻鸿,张中雷,李战军,崔晓荣. 露天矿山采剥施工的数字化精细管理实践[J]. 黄金科学技术, 2019, 27(4): 621-628.
[8] 任洪文,刘兆富,韩智尧,王京海,邓国平. 三维激光扫描技术在测绘采空区中的应用[J]. 黄金科学技术, 2013, 21(3): 64-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!