img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (3): 366-381.doi: 10.11872/j.issn.1005-2518.2022.03.119

• 矿产勘查与资源评价 • 上一篇    下一篇

烃汞叠加晕法在湖南万古金矿区及其外围深部找矿中的应用

陈海龙1,徐质彬1,杨晓弘1,杨海燕1,吴圣刚2,郑伯仁2,高磊2,陈俊辉2   

  1. 1.湖南省遥感地质调查监测所,湖南 长沙 410015
    2.湖南黄金洞矿业有限责任公司,湖南 平江 445614
  • 收稿日期:2021-08-30 修回日期:2021-12-27 出版日期:2022-06-30 发布日期:2022-09-14
  • 作者简介:陈海龙(1968-),男,湖南祁东人,高级工程师,从事地球化学勘查和理论应用研究工作。444352037 @qq.com
  • 基金资助:
    湖南省地质院科研基金项目“构造叠加晕—烃汞测量在金矿深边部找矿预测中的应用示范”(202015)

Application of Hydrocarbon-Mercury Superimposed Halo Method in Deep Prospecting of Wangu Gold Deposit and Its Periphery in Hunan Province

Hailong CHEN1,Zhibin XU1,Xiaohong YANG1,Haiyan YANG1,Shenggang WU2,Boren ZHENG2,Lei GAO2,Junhui CHEN2   

  1. 1.Hunan Provincial Remote Sensing Geological Survey and Monitoring Institute, Changsha 410015, Hunan, China
    2.Hunan Huangjindong Mining Co. , Ltd. , Pingjiang 445614, Hunan, China
  • Received:2021-08-30 Revised:2021-12-27 Online:2022-06-30 Published:2022-09-14

摘要:

为进一步验证烃汞叠加晕法在深部找矿预测中是否具有普适性,在雪峰弧形带北东段万古金矿区及其外围开展烃汞叠加晕深部找矿试验。通过分析已知矿区不同地质体、不同标高烃汞组分演化规律和矿体上部土壤烃汞综合异常结构、叠加特点及空间对应关系,指导万古金矿区外围江东矿段的深部找矿工作。研究表明:(1)万古矿区及其外围江东矿段土壤地球化学场同样存在同生叠加场和深源叠加场,同生叠加异常由于成矿物质来源于地层,Au与烃类组分相关性较差,烃汞异常呈分散状态,异常强度相对较低。(2)深源叠加异常是由于成矿物质来源于深源流体(岩浆或幔源)带来成矿物质的叠加,Au与烃汞相关性较好,烃汞异常中心突出,异常强度较强,烃类异常模式以多峰模式和对偶双峰异常模式为主。(3)烃类异常呈多峰模式出现,说明深部存在多条平行盲脉,而对偶双峰异常模式只出现头部异常峰,尾部异常峰尚未出现,说明矿体往深部延伸良好,深部找矿潜力较好。经工程验证,在江东矿段红层覆盖区取得了良好的预测效果,证实该方法具有较好的普适性。

关键词: 同生叠加异常, 深源叠加异常, 深部成矿预测, 烃汞叠加晕法, 万古金矿, 湖南省

Abstract:

In order to further verify whether the hydrocarbon-mercury superimposed halo method has universality in deep prospecting prediction,a hydrocarbon-mercury superimposed halo deep prospecting test was carried out in the Wangu gold mining area and its periphery in the northeast section of the Xuefeng arc.By analyzing the evolution of hydrocarbon-mercury components of different geological bodies and different elevations in the known mining areas,and the comprehensive abnormal structure,superimposition chara-cteristics and spatial correspondence of hydrocarbon-mercury in the upper soil of the ore body,the deep prospecting in the peripheral Jiangdong ore section is guided.The results show that the soil geochemical field in the Wangu mining area and its surrounding Jiangdong mining section also has a syngenetic superimposition field and a deep source superimposition field.The syngenetic superimposition anomaly is due to the stratum, and the correlation between Au and hydrocarbon components is poor. Hydrocarbon mercury anomalies are in a dispersed state, with relatively low anomalous intensity.Deep source superposition anomaly is the superposition of ore-forming materials caused by deep source fluids(magma or mantle source),and Au has a good correlation with hydrocarbon mercury.The hydrocarbon mercury anomaly center is prominent and the anomaly intensity is strong.The hydrocarbon anomaly patterns are mainly multimodal and dual bimodal anomaly patterns.Hydrocarbon anomalies appear in multimodal patterns,indicating that there are multiple parallel blind veins in the deep,and the dual in the bimodal abnormal pattern,only the head abnormal peak appears,but the tail abnormal peak has not yet appeared.It shows that the ore body extends well to the deep indicating that the mineralization has not yet ended,and there is still a good prospecting potential in the deep part.Through engineering verification,good prediction results have been obtained in the red bed coverage area of Jiangdong ore section.It is proved that the method has good universality.

Key words: syngenetic superposition anomaly, deep source superposition anomaly, deep metallogenic prediction, hydrocarbon-mercury superimposed halo method, Wangu gold deposit, Hunan Province

中图分类号: 

  • P618.51

图1

万古金矿地质简图1.第四系;2.白垩系戴家坪组;3.冷家溪群第四岩性组第二段;4.冷家溪群第四岩性组第一段;5.石英脉;6.断层;7.含金矿脉;8.烃汞剖面及编号"

表1

万古金矿区含矿地层烃汞组分背景含量特征"

背景场参数甲烷乙烷丙烷异丁烷正丁烷异戊烷正戊烷乙烯丙烯吸附汞
区域背景均值11.470.910.630.060.230.050.101.380.851.01
Cv0.580.560.540.550.580.560.550.510.591.98
矿区背景均值17.503.022.310.180.860.190.322.641.912.66
Cv0.540.470.430.530.410.480.440.460.431.50

表2

区域不同地层对应土壤与岩石中烃汞组分含量比值(富集系数)"

地层甲烷乙烷丙烷异丁烷正丁烷异戊烷正戊烷乙烯丙烯吸附汞
冷家溪群0.640.200.150.290.140.170.371.470.8815.38
白垩系0.440.410.410.410.410.420.431.241.003.86

表3

万古金矿区不同地质体烃汞组分含量特征"

特征Au甲烷乙烷丙烷异丁烷正丁烷异戊烷正戊烷乙烯丙烯
背景值3.215.960.510.310.030.110.020.050.780.401.08
矿体>3 00063.487.504.690.511.750.420.678.847.602.70
强蚀变5.9136.474.772.290.200.820.170.325.013.550.81
弱蚀变9.8036.534.312.130.180.710.170.284.483.050.07
未蚀变1.6522.112.741.360.160.450.130.172.481.910.22

表4

万古金矿V2脉各指标相关系数统计"

指标Au甲烷乙烷丙烷异丁烷正丁烷异戊烷正戊烷乙烯丙烯
Au1.00
甲烷0.411.00
乙烷0.420.991.00
丙烷0.360.990.981.00
异丁烷0.550.960.960.971.00
正丁烷0.340.980.961.000.961.00
异戊烷0.330.950.930.980.950.991.00
正戊烷0.320.960.940.990.951.001.001.00
乙烯0.360.990.991.000.960.990.970.981.00
丙烯0.370.990.981.000.971.000.980.991.001.00
0.690.080.030.100.260.120.190.150.070.111.00

图2

万古金矿白荆矿段V2脉R型聚类分析谱系图"

表5

万古金矿505线土壤元素相关系数统计"

指标Au甲烷乙烷丙烷异丁烷正丁烷异戊烷正戊烷乙烯丙烯
Au1.00
甲烷0.311.00
乙烷0.300.861.00
丙烷0.330.700.921.00
异丁烷0.360.740.790.831.00
正丁烷0.220.440.810.920.681.00
异戊烷0.150.090.390.510.320.631.00
正戊烷0.240.280.450.690.590.720.451.00
乙烯0.270.290.080.260.400.070.000.621.00
丙烯0.420.780.650.660.730.420.230.540.651.00
0.290.270.200.290.390.200.200.470.670.541.00

表6

万古金矿529线土壤元素相关系数统计"

指标Au甲烷乙烷丙烷异丁烷正丁烷异戊烷正戊烷乙烯丙烯
Au1.00
甲烷0.021.00
乙烷0.010.971.00
丙烷0.040.880.951.00
异丁烷0.030.800.870.951.00
正丁烷0.070.800.900.980.921.00
异戊烷0.040.730.780.870.850.891.00
正戊烷0.090.440.520.670.700.750.761.00
乙烯0.120.580.580.670.690.680.740.681.00
丙烯0.080.780.830.910.940.880.800.710.771.00
0.040.080.090.140.130.190.150.330.480.211.00

图3

万古金矿505线土壤地球化学剖面1.第四系;2.冷家溪群第四岩性组第二段;3.冷家溪群第四岩性组第一段;4.残坡积物;5.板岩;6.砂质板岩;7.粉砂质板岩;8.矿脉及编号;9.断层及编号;10.地层界线;11.产状;12.探槽位置及编号;13.钻孔位置及编号;14.坑道;15.金品位(×10-6)/真厚度(m);16.甲烷;17.乙烷与丙烷之和;18.异丁烷、正丁烷、异戊烷及正戊烷之和;19.乙烯;20.丙烯"

图4

万古金矿529线土壤地球化学剖面1.第四系;2.冷家溪群第四岩性组第一段;3冷家溪群第四岩性组第二段;4.残坡积物;5.板岩;6.砂质板岩;7.粉砂质板岩;8.矿脉及编号;9.地层界线;10.产状;11.钻孔位置及编号;12.坑道;13.金品位(×10-6)/真厚度(m);14.甲烷;15.乙烷、丙烷之和;16.异丁烷、正丁烷、异戊烷、正戊烷之和;17.乙烯;18.丙烯"

表7

万古金矿江东矿段1线土壤元素相关系数统计"

指标Au甲烷乙烷丙烷异丁烷正丁烷异戊烷正戊烷乙烯丙烯
Au1.00
甲烷0.071.00
乙烷0.091.001.00
丙烷0.080.991.001.00
异丁烷0.090.980.990.991.00
正丁烷0.090.991.001.001.001.00
异戊烷0.090.980.980.991.000.991.00
正戊烷0.110.980.990.990.991.000.991.00
乙烯0.220.040.000.020.050.000.050.021.00
丙烯0.230.020.050.070.010.050.020.070.961.00
0.170.230.190.170.140.160.130.140.400.211.00

图5

万古金矿江东矿段1线土壤地球化学剖面1.第四系;2.上白垩统戴家坪组;3.冷家溪群第四岩性段第二段;4.残坡积物;5.砾岩;6.矿脉及编号;7.地层界线;8.不整合地层界线;9.金品位(×10-6)/真厚度(m);10.甲烷;11.乙烷、丙烷之和;12.异丁烷、正丁烷、异戊烷、正戊烷之和;13.乙烯;14.丙烯"

表8

万古金矿江东矿段1线AS3、AS4综合异常土壤元素相关系数"

指标Au甲烷乙烷丙烷异丁烷正丁烷异戊烷正戊烷乙烯丙烯
Au1.00
甲烷0.151.00
乙烷0.151.001.00
丙烷0.160.991.001.00
异丁烷0.161.001.000.991.00
正丁烷0.161.001.001.000.991.00
异戊烷0.161.001.000.991.000.991.00
正戊烷0.150.991.001.001.001.001.001.00
乙烯0.270.280.230.190.280.200.280.201.00
丙烯0.240.220.160.130.220.140.220.140.981.00
0.070.410.380.370.370.370.370.350.520.421.00

表9

万古金矿江东矿段8线土壤元素相关系数统计"

指标Au甲烷乙烷丙烷异丁烷正丁烷异戊烷正戊烷乙烯丙烯
Au1.00
甲烷0.371.00
乙烷0.371.001.00
丙烷0.361.001.001.00
异丁烷0.361.001.001.001.00
正丁烷0.361.001.001.001.001.00
异戊烷0.371.001.001.001.001.001.00
正戊烷0.340.980.980.980.980.980.981.00
乙烯0.170.050.050.070.070.050.050.211.00
丙烯0.080.080.080.100.090.070.070.220.891.00
0.030.120.120.110.110.120.120.030.320.401.00

图6

万古金矿江东矿段8线土壤地球化学剖面1.第四系;2.上白垩统戴家坪组;3.冷家溪群第四岩性段第二段;4.残坡积物;5.砾岩;6.砂质板岩;7.矿脉及编号;8.地层界线;9.不整合地层界线;10.产状;11.钻孔位置及编号;12.金品位(×10-6)/真厚度(m);13.甲烷;14.乙烷、丙烷之和;15.异丁烷、正丁烷、异戊烷、正戊烷之和;16.乙烯;17.丙烯"

Cao Ronglong, Zhu Huashou,1995.Mantle fluids and mineralization[J].Advances in Earth Science,10(4):324-329.
Chen Feng,1996.Hydrogen—An important source of deep earth fluids[J].Earth Science Frontiers,3(3):72-79.
Chen Hailong, Xiao Qipeng, Liang Juhong,2021.The application of hydrocarbon and superimposed halo method to the Woxi gold deposit,Hunan Province[J].Geophysical and Geochemical Exploration,45(2):266-280.
Chen Yuanrong, Dai Tageng, Jia Guoxiang,et al,2001a.The common anomaly pattern of organic hydrocarbon of metallic ore deposit and its mechanism study[J].Mineral Reso-urces and Geology,15(6) :738-742.
Chen Yuanrong, Dai Tagen, Zhuang Xiaorui,et al,2001b.Main controlling factors for vertical migration of hydrocarbons and mercury[J].Chinese Geology,28(8):28-32.
Chen Yuanrong, Jia Guoxiang, Dai Tagen,2002.The role of organic material in metallic mineralization and its application in metal exploration[J].Chinese Geology,29(3):257-262.
Du Letian,1996a.The relationship between crustal fluids and mantle fluids[J].Earth Science Frontiers,3(3/4):172-180.
Du Letian,1996b.Principles of Hydrocarbon Alkali Geochemistry[M].Beijing:Beijing Science and Technology Press.
Du Letian,1996c.Mantle Fluids and Asthenosphere(Body) Geochemistry[M].Beijing:Geological Publishing House.
Huang Jianzhong, Sun Ji, Zhou Chao,et al,2020.Metallogenic regularity and resource potential of gold deposits in the Jiangnan orogenic belt (Hunan section) [J].Acta Geoscientica Sinica,41(2):230-252.
Li Hui, Yu Bin, Li Deliang,et al,2013.Prediction of blind ore bodies using structural superimposed halo and research methods[J].Geology and Exploration,49(1):154-161.
Li Hui, Zhang Guoyi, Yu Bin,2006.Structural Superposition Halo Model and Prospecting Effect of Blind Ore Prediction in Deep Gold Area[M].Beijing:Geological Publishing Press.
Liu Congqiang, Huang Zhilong,2004.Mantle Fluid and Its Mineralization[M].Beijing:Geological Publishing House.
Liu Congqiang, Huang Zhilong, Li Heping,2001.Mantle fluid and its mineralization[J] .Earth Science Frontiers,8(4):231-243.
Liu Yingjun, Cao Limin,1984.Elemental Geochemistry[M].Beijing:Science Press.
Liu Yingjun, Sun Chengyuan, Ma Dongsheng,1993.Jiangnan Gold Deposit and Its Geochemical Background of Mineralization[M].Nanjing:Nanjing University Press.
Lu Fengxiang,1996.Deep mantle and deep fluids[J].Earth Science Frontiers,3(4):231-243.
Luo Xianlin,1988.On the genesis and metallogenic model of the Huangjindong gold deposit from Hunan[J].Journal of Guilin College of Geology,8(8):225-239.
Luo Xianlin,1989.On the epoch of the formation of precambrian gold deposits in Hunan Province[J].Journal of Guilin College of Geology,9(1):25-34.
Ma Dongsheng,1991.Geochemistry and metallogenesis of the proterozoic stratabound gold deposits in the Jiangnan area,South China[J].Journal of Nanjing University(Natural Sci-ence),27(4):753-764.
Mao Jingwen, Li Hongyan, Xu Jue,et al,1997.Geology and Genesis of Gold Deposits in Wangu Area,Hunan[M].Beijing:Atomic Energy Press.
Mao Jingwen, Zhang Xiaofeng, Li Ronghua,et al,2004.Deep Fluid Mineralization System[M].Beijing:China Land Pu-blishing House.
Meng Xianwei, Dou Mingxiao, Yu Xianchuan,1994.The theories and methods on the dispersion of geochemical field[J].Advance in Earth Sciences,6(6):59-64.
Nan J B, King H E, Delen G,et al,2021.The nanogeochemistry of abiotic carbonaceous matter in serpentinites from the Yap Trench,western Pacific Ocean[J].Geology,49 (3):330-334.
Peng Jiantang,1999.Discussion on the evolution mechanism of gold mineralization in Xuefeng area,Hunan Province [J].Geotectonica et Metallogenia,23(2):144-151.
Qi Changmou,1997.A discussion for geochemical classification of elements[J].Journal of Changchun University of Earth Science,21(4):361-365.
Shao Jingbang, Wang Pu, Chen Daizhang,1996.Preliminary study on the organic characteristics of the mineralization alteration zone of the Woxi gold-antimony-tungsten deposit in Xiangxi[J].Geology of Precious Metals,5(2):195-200.
Wu Xisheng,2008.Data Processing Method of Geochemical Exploration[M].Beijing:Metallurgical Publishing House.
Xiao Yongjun, Chen Guanghao,2007.Preliminary study on the metallogenic structure characteristics of gold deposits in the Wangu area of northeastern Hunan[J].Geology and Exploration,43(3):42-45.
Xie Taoyuan, Chen Yuanrong, Zhang Jing,et al,2010.Application of hydrocarbon measurement to evaluation and prediction of mineralization in the Wulaga gold deposit of Heilongjiang Province[J].Geology and Exploration,46(3):506-514.
Xu Qinghong, Chen Yuanrong, Mao Jingwen,et al,2005.Application for hydrocarbon in prognosis buried gold deposits and implication for genesis[J].Geological Review,51(5):105-112.
Xu Qinghong, Xie Wenqing, Chen Yuanrong,2005.Comprehensive geochemical anomaly zoning model and prospecting prediction criteria of Qiuzhuang gold deposit,Fujian Province[J].Geology and Exploration,41(1):56-61.
Yu Chongwen,1986.Theoretical system and methodology of geochemistry [J].Geoscience,11(4):331-339.
Yu Chongwen,1995.Methods and Applications of Mathematical Geology[M].Beijing:Metallurgical Press.
Yuan Lanling, Ji Wei,2008.Geological and geochemical characteristics and genesis of the Wangu gold deposit in Hunan Province[J].Geology and Mineral Resources of South China,2008,(3):22-28.
Zhang Miaomiao, Chen Yuanrong,2009.Application of Hydrocarbon Gas Measurement in Jianchaling Gold Deposit and Its Peripheral Area,Lueyang,Shaanxi Province [D].Guilin:Guilin University of Technology.
Zhao Yang, Wang Mingqi, Zhang He,2021.Epigenetic anomalies and deep penetration geochemistry of soil (soil cover)[J].Geophysical and Geochemical Exploration,45(2):257-265.
曹荣龙,朱华寿,1995.地幔流体与成矿作用[J] .地球科学进展,10(4):324-329.
陈丰,1996.氢——地球深部流体的重要源泉[J].地学前缘,3(3):72-79.
陈海龙,肖其鹏,梁巨宏,2021.湖南沃溪金矿区及其外围烃汞叠加晕找矿方法的应用效果[J].物探与化探,45(2):266-280.
陈远荣,戴塔根,贾国相,等,2001a.金属矿床有机烃气常见异常模式和成因机理研究[J].矿产与地质,15(6):738-742.
陈远荣,戴塔根,庄晓蕊,等,2001b.烃汞气体组分垂向运移的主要控制因素[J].中国地质,28 (8):28-32.
陈远荣,贾国相,戴塔根,2002.论有机质与金属成矿和勘查[J].中国地质,29(3):257-262.
杜乐天,1996a.地壳流体与地幔流体间的关系 [J].地学前缘,3(3/4):172-180.
杜乐天,1996b.地幔流体与软流层( 体) 地球化学[M] .北京:地质出版社.
杜乐天,1996c.烃碱地球化学原理 [M].北京:北京科技出版社.
黄建中,孙骥,周超,等,2020.江南造山带(湖南段)金矿成矿规律与资源潜力[J].地球学报,41(2):230- 252.
李惠,禹斌,李德亮,等,2013.构造叠加晕找盲矿法及研究方法[J].地质与勘探,49(1):154-161.
李惠,张国义,禹斌,2006.金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M].北京:地质出版社.
刘丛强,黄智龙,2004.地幔流体及其成矿作用[M].北京:地质出版社.
刘丛强,黄智龙,李和平,等,2001.地幔流体及其成矿作用[J] .地学前缘,8(4):231-243.
刘英俊,曹励民,1984.元素地球化学[M].北京:科学出版社.
刘英俊,孙承辕,马东升,1993.江南金矿及其成矿作用地球化学背景[M].南京:南京大学出版社.
路风香,1996.深部地幔及深部流体[J].地学前缘,3(4):231-243.
罗献林,1988.论湖南黄金洞金矿床的成因及成矿模式[J].桂林冶金地质学院学报,8(8):225-239.
罗献林,1989.论湖南前寒武系金矿床的形成时代[J].桂林冶金地质学院学报,9(1):25-34.
马东升,1991.江南元古界层控金矿的地球化学和矿床成因[J].南京大学学报(自然科学版),27(4):753-764.
毛景文,李红艳,徐珏,等,1997.湖南万古地区金矿地质与成因[M].北京:原子能出版社.
毛景文,张晓峰,李荣华,等,2004.深部流体成矿系统[M].北京:中国大地出版社.
孟宪伟,窦明晓,余先川,1994.地球化学场分解的理论与方法[J].地球科学进展,6(6):59-64.
彭建堂,1999.湖南雪峰地区金成矿演化机理探讨[J].大地构造与成矿学,23(2):144-151.
邵靖帮,王濮,陈代璋,1996.湘西沃溪金锑钨矿床矿化蚀变带有机质特征初探[J].贵金属地质,5(2):195-200.
吴锡生,2008.化探数据处理方法[M].北京:冶金出版社.
肖拥军,陈广浩,2007.湘东北万古地区金矿床成矿构造特征的初步研究[J].地质与勘探,43(3):42-45.
谢桃园,陈远荣,张璟,等,2010.烃气测量法在黑龙江乌拉嘎金矿区找矿预测评价中的应用[J].地质与勘探,46(3):506-514.
徐庆鸿,陈远荣,毛景文,等,2005a.有机烃在预测隐伏金矿床中的应用及其成因探索[J].地质论评,51(5):105-112.
徐庆鸿,谢文清,陈远荣,2005b.福建邱庄金矿综合地球化学异常分带模型与找矿预测标志[J].地质与勘探,41(1):56-61.
於崇文,1986.地球化学的理论体系与方法论[J].地球科学,11(4):331-339.
於崇文,1995.数学地质的方法与应用[M].北京:冶金出版社.
袁兰陵,季玮,2008.湖南万古金矿地质地球化学特征及其成因探讨[J].华南地质与矿产,(3):22-28.
张苗苗,陈远荣,2009.烃气测量法在陕西略阳煎茶岭金矿床及其外围地区的应用[D].桂林:桂林工学院.
赵阳,王明启,张鹤,2021.土壤(土被)中后生异常与深穿透地球化学[J].物探与化探,45(2):257-265.
[1] 袁梓焜, 邵拥军, 刘清泉, 张毓策, 王智琳. 湘东北万古金矿田江东金矿床成因——流体包裹体和H-O同位素制约[J]. 黄金科学技术, 2024, 32(4): 559-578.
[2] 张胜伟,邓腾,许德如,周岳强,董国军,李增华,马文,许可,海颜. 万古金矿中碳质物的成因及其与金成矿的关系[J]. 黄金科学技术, 2022, 30(6): 835-847.
[3] 万泰安,许德如,马文,张胜伟,王国建,卞玉冰,李博. 湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示[J]. 黄金科学技术, 2022, 30(5): 676-690.
[4] 谢玉华,高华,张哲,杨亮,柯新星,刘晓敏,罗建镖,刘琦,许坤林,刘继顺,王智琳,孔华,刘飚. 湖南通道地区金矿床成矿流体特征及成矿物质来源:来自流体包裹体、H-O-S同位素的证据[J]. 黄金科学技术, 2021, 29(1): 74-89.
[5] 高华, 谢玉华, 杨亮, 张哲, 柯新星, 刘晓敏, 罗建镖, 刘琦, 刘继顺, 王智琳, 孔华. 湖南通道地区金矿床中黄铁矿成分标型特征及对矿床成因的启示[J]. 黄金科学技术, 2020, 28(5): 712-726.
[6] 曾叶欣,张钦礼. 基于弹性系数法的湖南省有色金属资源供需安全研究[J]. 黄金科学技术, 2018, 26(6): 803-810.
[7] 郑慕婷,张术根,贺忠春. 湖南康家湾金银多金属矿床金银赋存状态及其与成矿演化的关系[J]. 黄金科学技术, 2017, 25(6): 31-42.
[8] 李武毅,蓝景周,伦生平. 湖南白竹坪金矿地质特征及找矿标志[J]. 黄金科学技术, 2015, 23(5): 35-40.
[9] 曹琼,庞绪成,宛克勇,罗华彪,司江涛. 湖南老鸦巢隐爆角砾岩型金矿床地质特征及找矿标志[J]. 黄金科学技术, 2014, 22(1): 15-21.
[10] 李己华,吴继承. 湖南曲溪金矿成矿规律与成矿预测[J]. 黄金科学技术, 2012, 20(5): 16-20.
[11] 王书春,王瑞腾,孙树提. 内蒙古柴胡栏子金矿床矿体赋存特征及深部预测[J]. J4, 2012, 20(4): 109-112.
[12] 李太兵,李永光,易建春. 湖南曲溪金矿床成矿作用及成矿物质来源探讨[J]. J4, 2012, 20(4): 104-108.
[13] 向启安,杨天春. 激电测深在湖南醴陵金矿激电异常评价中的应用[J]. J4, 2011, 19(5): 1-6.
[14] 田宏伟, 付彩云, 李惠. 祁雨沟角砾岩型金矿区深边部找矿浅析[J]. J4, 2010, 18(1): 1-5.
[15] 谭克仁. 部分地电提取法和吸附提取法在隐伏金矿床普查找矿勘查中的应用[J]. J4, 2000, 8(2): 26-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!