黄金科学技术 ›› 2022, Vol. 30 ›› Issue (3): 404-413.doi: 10.11872/j.issn.1005-2518.2022.03.037
贡力1,2(),陆丽丽1(),靳春玲1,梁栋3,周汉国3,谢平3
Li GONG1,2(),Lili LU1(),Chunling JIN1,Dong LIANG3,Hanguo ZHOU3,Ping XIE3
摘要:
岩爆是地下工程开挖面临的关键问题之一,为了准确预测深埋隧洞中岩爆烈度倾向等级,提出了正态隶属度—属性区间识别模型的岩爆预测方法。针对岩爆倾向等级属于典型的多属性有序分割类问题,构建了属性区间识别模型,并将岩爆倾向等级划分为4个等级进行预测。根据岩爆发生的成因和机理,选取应力系数、脆性系数、弹性应变指数和岩石完整性系数作为预测指标,考虑各指标之间、指标与标准等级之间的交互关系,采用正态隶属度函数和Jousselme距离计算评价指标权重。结合13个深埋隧洞工程对该预测模型进行准确性测试,并以双江口水电站SPD9厂房为例进行工程实例验证,该模型预测结果与实际相吻合,证明该模型用于具体工程实践中是可行且有效的,研究结果可为类似深埋隧洞岩爆倾向等级预测提供新的思路。
中图分类号:
Adoko A C, Gokceoglu C, Wu L,et al,2013.Knowledge-based and data-driven fuzzy modeling for rockburst prediction[J].International Journal of Rock Mechanics and Mining Sciences,61:86-95. | |
Chen Xiang, Sun Jinzhong, Zhang Jiekun,et al,2009.Judgment indexes and classification criteria of rock-burst with the extension judgment method[J].China Civil Engineering Journal,42(9):82-88. | |
Dong L J, Li X B, Peng K,2013.Prediction of rockburst classification using random forest[J].Transactions of Nonferrous Metals Society of China,23(2):472-477. | |
Jia Zheqiang, Zhang Ru, Zhang Yanfei,et al,2016.Integrated prediction for rockburst of underground powerhouse of Houziyan hydropower station[J].Chinese Journal of Geotechnical Engineering,38(Supp.2):110-116. | |
Kidybinski A,1981.Bursting liability indices of coal[J].International Journal of Rock Mechanics and Mining Sciences,18(4):295-304. | |
Li Hang,2020.Research on Tunnel Rockburst Prediction Method Based on Combination Weight Ideal Point Method-Database[D].Beijing:China University of Geosciences (Beijing). | |
Li Pengcheng, Ye Yicheng, Wang Qihu,et al,2019.Grey evaluation rockburst prediction model based on normal whitening weight function[J].Industrial Minerals & Processing,48(5):16-22,26. | |
Li Renhao, Gu Helong, Li Xibing,et al,2020.A PSO-RBF neural network model for rockburst tendency prediction[J].Gold Science and Technology,28(1):134-141. | |
Lin Dayong, Lei Mingfeng, Cao Haorong,et al,2018.Study on construction risk of shield tunnel under-passing existing railway by fuzzy comprehensive evaluation[J].Journal of Railway Science and Engineering,15(5):1347-1355. | |
Liu Ran, Ye Yicheng, Zhang Guangquan,et al,2019.Grading prediction model of rockburst based on rough set-multidiensional normal cloud[J].Metal Mine,(3):48-55. | |
Liu Xiaoyue, Yang Wei, Zhang Xuemei,2021.Rockburst prediction of multi-dimensional cloud model based on improved hierarchical analytic method and critic method[J].Journal of Hunan University(Natural Sciences),48(2):118-124. | |
Pei Qitao, Li Haibo, Liu Yaqun,et al,2013.Rockburst prediction based on a modified grey[J].Chinese Journal of Rock Mechanics and Engineering,32(10):2088-2093. | |
Russenes B F,1974.Analysis of Rock Spalling for Tunnels in Steep Valley Sides[D].Trondheim:Norwegian Institute of Technology. | |
Shen Y N, Zhang J B,2019.Equipment management performan-ce assessment based on cloud model and evidence theory[J].Systems Engineering and Electronics,41(5):1049-1055. | |
Sun Chensheng,2019.A prediction model of rock burst in tunnel based on the improved MATLAB-BP neural network[J].Journalof Chongqing Jiaotong University(Natural Science),38(10):41-49. | |
Tian Rui, Meng Haidong, Chen Shijiang,et al,2020.Prediction of intensity classification of rockburst based on deep neural network[J].Journal of China Coal Society,45(Supp.1):191-201. | |
Wang M W, Liu Q Y, Wang X,et al,2020.Prediction of rockburst based on multidimensional connection cloud model and set pair analysis[J].International Journal of Geomechanics,20(1).DOI:10.1061/(ASCE)GM.1943-5622.0001546 .
doi: 10.1061/(ASCE)GM.1943-5622.0001546 |
|
Wang Yingchao, Jing Hongwen, Ji Xianwei,et al,2014.Model for classification and prediction of rock burst intensity in a deep underground engineering with rough set and efficacy coefficient method[J].Journal of Central South University(Science and Technology),45(6):1992-1997. | |
Wang Yingchao, Jing Hongwen, Zhang Qiang,et al,2015.A normal cloud model-based study of grading prediction of rockburst intensity in deep underground engineering[J].Rock and Soil Mechanics,36(4):1189-1194. | |
Wang Yuanhan, Li Wodong, Li Qiguang,et al,1998.Method of fuzzy comprehensive evaluations for rockburst prediction[J].Chinese Journal of Rock Mechanics and Engineering,(5):15-23. | |
Xu Chen, Liu Xiaoli, Wang Enzhi,et al,2017.Prediction and classification of strain mode rockburst based on five-factor crierion and combined weight-ideal point method[J].Chinese Journal of Geotechnical Engineering,39(12):2245-2252. | |
Yin Xin, Liu Quansheng, Wang Xinyu,et al,2020.Prediction model of rockburst intensity classification based on combined weighting and attribute interval recognition theory[J].Journal of China Coal Society,45(11):3772-3780. | |
Zhang Biao, Dai Xingguo,2017.rockburst intensity grade based on index distance and uncertainty measure[J].Rock and Soil Mechanics,38(Supp.2):257-265. | |
Zhang Guangcun, Gao Qian, Du Juqiang,et al,2013.Rockburst criterion based on artificial neural networks and nonlinear regression[J].Journal of Central South University(Science and Technology),44(7):2977-2981. | |
Zhang Jingjian, Fu Bingjun,2008.Rock burst and its criteria and control[J].Chinese Journal of Rock Mechanics and Engineering,27(10):2034-2042. | |
Zhang Lewen, Zhang Deyong, Qiu Daohong,2010.Application of extension evaluation based on rough set in rockburst prediction [J] .Coal Coal Journal,35(9):1461-1465. | |
ZhangYan, Su Guoshao, Yan Liubin,2011.Method of identifying rockburst grades based on Gaussian process machine learning[J].Chinese Journal of Underground Space and Engineering,7(2):392-397. | |
Zou Qiang, Zhou Jianzhong, Yang Xiaoling,et al,2011.A comprehensive assessment model for severity degree of dam failure impact based on attribute interval recognition theory[J].Journal of Sichuan University (Engineering Science Edition),43(2):45-50. | |
陈祥,孙进忠,张杰坤,等,2009.岩爆的判别指标和分级标准及可拓综合判别方法[J].土木工程学报,42(9):82-88. | |
贾哲强,张茹,张艳飞,等,2016.猴子岩水电站地下厂房岩爆综合预测研究[J].岩土工程学报,38(增2):110-116. | |
李航,2020.基于组合权重理想点法—数据库的隧洞岩爆预测方法研究[D].北京:中国地质大学(北京). | |
李鹏程,叶义成,王其虎,等,2019.基于正态白化权函数的灰评估岩爆预测模型[J].化工矿物与加工,48(5):16-22,26. | |
李任豪,顾合龙,李夕兵,等,2020.基于PSO-RBF神经网络模型的岩爆倾向性预测[J].黄金科学技术,28(1):134-141. | |
林大涌,雷明锋,曹豪荣,等,2018.盾构下穿运营铁路施工风险模糊综合评价方法研究[J].铁道科学与工程学报,15(5):1347-1355. | |
刘冉,叶义成,张光权,等,2019.岩爆分级预测的粗糙集—多维正态云模型[J].金属矿山,(3):48-55. | |
刘晓悦,杨伟,张雪梅,2021.基于改进层次法与CRITIC法的多维云模型岩爆预测[J].湖南大学学报(自然科学版),48(2):118-124. | |
裴启涛,李海波,刘亚群,等,2013.基于改进的灰评估模型在岩爆中的预测研究[J].岩石力学与工程学报,32(10):2088-2093. | |
孙臣生,2019.基于改进MATLAB-BP神经网络算法的隧道岩爆预测模型[J].重庆交通大学学报(自然科学版),38(10):41-49. | |
田睿,孟海东,陈世江,等,2020.基于深度神经网络的岩爆烈度分级预测研究[J].煤炭学报,45(增1):191-201. | |
王迎超,靖洪文,吉咸伟,等,2014.深埋地下工程岩爆烈度分级预测的RS-功效系数模型[J].中南大学学报(自然科学版),45(6):1992-1997. | |
王迎超,靖洪文,张强,等,2015.基于正态云模型的深埋地下工程岩爆烈度分级预测研究[J].岩土力学,36(4):1189-1194. | |
王元汉,李卧东,李启光,等,1998.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,(5):15-23. | |
徐琛,刘晓丽,王恩志,等,2017.基于组合权重—理想点法的应变型岩爆五因素预测分级[J].岩土工程学报,39(12):2245-2252. | |
殷欣,刘泉声,王心语,等,2020.基于组合赋权和属性区间识别理论的岩爆烈度分级预测模型[J].煤炭学报,45(11):3772-3780. | |
张彪,戴兴国,2017.基于指标距离与不确定度量的岩爆云模型预测研究[J].岩土力学,38(增2):257-265. | |
张光存,高谦,杜聚强,等,2013.基于人工神经网络及非线性回归的岩爆判据[J].中南大学学报(自然科学版),44(7):2977-2981. | |
张镜剑,傅冰骏,2008.岩爆及其判据和防治[J].岩石力学与工程学报,27(10):2034-2042. | |
张乐文,张德永,邱道宏,2010.基于粗糙集的可拓评判在岩爆预测中的应用[J].煤炭学报,35(9):1461-1465. | |
张研,苏国韶,燕柳斌,2011.基于高斯过程机器学习的岩爆等级识别方法[J].地下空间与工程学报,7(2):392-397. | |
邹强,周建中,杨小玲,等,2011.属性区间识别模型在溃坝后果综合评价中的应用[J].四川大学学报(工程科学版),43(2):45-50. |
[1] | 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929. |
[2] | 李彤彤, 王玺, 刘焕新, 侯奎奎, 李夕兵. 基于组合赋权的T-FME岩爆倾向性预测模型研究及应用[J]. 黄金科学技术, 2020, 28(4): 565-574. |
[3] | 李任豪,顾合龙,李夕兵,侯奎奎,朱明德,王玺. 基于PSO-RBF神经网络模型的岩爆倾向性预测[J]. 黄金科学技术, 2020, 28(1): 134-141. |
[4] | 王旷,李夕兵,马春德,顾合龙. 基于改进的RS-TOPSIS模型的岩爆倾向性预测[J]. 黄金科学技术, 2019, 27(1): 80-88. |
[5] | 饶运章,李雪珍. 基于实际冲击能量指数(W)的岩爆预测技术研究[J]. 黄金科学技术, 2015, 23(4): 63-67. |
|