img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (3): 427-437.doi: 10.11872/j.issn.1005-2518.2022.03.194

• 采选技术与矿山管理 • 上一篇    下一篇

联合改进作用距离和Dijkstra算法的复杂结构声发射定位方法及应用

郑雨晴(),陈勇,王进华,尚雪义(),刘彩云   

  1. 重庆大学资源与安全学院,煤矿灾害动力学与控制国家重点实验室,重庆 400044
  • 收稿日期:2021-12-13 修回日期:2022-04-08 出版日期:2022-06-30 发布日期:2022-09-14
  • 通讯作者: 尚雪义 E-mail:zhengyuqing0203@foxmail.com;shangxueyi@cqu.edu.cn
  • 作者简介:郑雨晴(2001-),女,四川宜宾人,本科生,从事声发射监测方面的研究工作。zhengyuqing0203@foxmail.com
  • 基金资助:
    国家级大学生创新训练计划资助项目“三维含孔洞结构声发射事件精准定位”(202110611102);国家自然科学基金青年基金项目“硬岩开采诱发微震震源机制的贝叶斯波形反演及其演化规律研究”(52004041);重庆市自然科学基金博士后面上项目“地下矿山三维高斯束层析成像与逆时偏移定位研究”(cstc2020jcyj-bshX0106)

Acoustic Emission Localization Method for Complex Structure Based on Improved Interaction Distance and Dijkstra Algorithm and Its Application

Yuqing ZHENG(),Yong CHEN,Jinhua WANG,Xueyi SHANG(),Caiyun LIU   

  1. State Key Laboratory of Coal Mine Disaster Dynamics and Control,School of Resources Safety Engineering,Chongqing University,Chongqing 400044,China
  • Received:2021-12-13 Revised:2022-04-08 Online:2022-06-30 Published:2022-09-14
  • Contact: Xueyi SHANG E-mail:zhengyuqing0203@foxmail.com;shangxueyi@cqu.edu.cn

摘要:

声发射定位对含空区等复杂结构的连续动态安全监测具有重要意义。针对直线路径定位方法不适用于复杂结构,而常规Dijkstra搜索算法常出现局部最优路径等问题,提出了一种联合改进作用距离和Dijkstra算法的声发射定位方法,实现复杂结构下声发射的高精度定位。理论测试显示:基于改进作用距离的Dijkstra算法得到的P波传播路径长度小于等于常规作用距离的Dijkstra算法,即P波走时更为准确。理论测试和断铅试验定位测试表明:本文提出的定位方法在复杂结构声发射定位时的整体误差在0.50 cm范围之内,断铅事件平均定位误差由常规作用距离Dijkstra算法的0.95 cm下降至本文的0.54 cm。改进的声发射定位方法在复杂结构声发射定位方面具有很好的应用前景。

关键词: 安全监测, 声发射定位, 复杂结构, Dijkstra算法, P波走时, 作用距离

Abstract:

Acoustic emission source location plays an important role in the continuous dynamic safety monitoring of complex structures which contain empty zones. The straight path-based location method can’t be applied in a complex structure, and the existing Dijkstra search algorithm can obtain optimal local paths. This study improves the calculation method of the distance between two points: if the line determined by two points does not intersect the obstacle, the straight line distance between the two points is the reachable distance of two points, and the other ways are recorded as infinity.To solve this problem, an acoustic emission location method based on improved interaction distance and Dijkstra algorithm was proposed in this study. It uses the double-difference method to establish the positioning objective function and the mesh method to calculate the fitting error of the positioning objective function of each grid point, and takes the corresponding point of the minimum fit error as the positioning result, which to achieve a high-precision acoustic emission location in a complex structure. Tests were carried out with complex structures with rectangles, triangles, and circles and structures with single round holes. The results indicate that the P wave propagation path obtained by the Dijkstra algorithm with improved interaction distance is less than or equal to that obtained by the traditional Dijkstra algorithm. And the P wave propagation path containing the round pore structure is very close to the theoretical propagation distance. In other words, the P wave travel time based on improved interaction distance is more reliable. After adding 3us Gaussian noise to the theory, the positioning error of the conventional method reached 1.5cm, but the location method proposed in this study has an overall location error within 0.50 cm for complex structures. It shows that the proposed method has good robustness. Further, the lead-breaking experiment was carried out on the rectangular (30 cm×20 cm) granite sample containing a round hole (D=2.5 cm). After the double-difference method was used to remove the P wave initial to systematic error, the positioning error of the conventional method was mainly 0.5 to 1.5 cm, and the overall error of the positioning method in this paper was within the range of 0.50 cm, and the average positioning error for the lead breaking events from 0.95 cm of traditional Dijkstra algorithm to 0.54 cm for PLB events, which indicates that the proposed method has a good application prospect for complex structures.

Key words: safety monitoring, acoustic emission localization, complex structure, Dijkstra algorithm, P wave travel time, interaction distance

中图分类号: 

  • TD-05

图1

Dijkstra算法实例"

图2

常规作用距离与改进作用距离的搜索节点比较"

图3

改进的声发射定位方法流程图"

图4

P波在含多种形状障碍物的复杂结构中的传播路径"

表1

2种测试试验的传感器位置"

测试

试验

传感器

编号

传感器位置/cm测试试验传感器编号传感器位置/cm
xyxy
含多种形状障碍物的复杂结构理论测试14848含单一圆孔的复杂结构理论测试12818
2482522810
34823282
42524152
522522
62256210
72487218
8254881518

图5

P波在含多种形状障碍物的复杂结构中的传播距离"

图6

P波在含单圆孔复杂结构中的传播路径"

图7

P波在含单圆孔复杂结构中的传播距离"

图8

常规作用距离与改进作用距离Dijkstra算法的传播距离差值统计"

图9

基于常规作用距离的Dijkstra算法定位结果"

图10

基于改进作用距离的Dijkstra算法定位结果"

表2

基于Dijkstra算法的定位结果"

使用的数据常规作用距离定位/cm改进作用距离定位/cm
xy误差xy误差
理论时间12.5010.500.7112.0010.500.50
含1.5 μs高斯噪声12.509.001.1212.009.500.50
含3.0 μs高斯噪声12.508.501.5812.009.500.50

图11

不同噪声条件下本文方法485个事件定位结果"

图12

试验设备及声发射监测原理"

图13

断铅事件定位结果"

图14

断铅试验定位误差统计"

Baxter M G, Pullin R, Holford K M,et al,2007.Delta T source location for acoustic emission[J].Mechanical Systems and Signal Processing,21(3):1512-1520.
Dai Rui, Zhang Da, Ji Hu,et al,2019.A study on high precision location method of microseism in mine goafs[J].China Mining,28(Supp.2):195-199.
Dang Mingzhi, Zhang Jun, Jia Mingtao,2020.Application and research of microseismic monitoring technology and disaster early warning methods in Huangtupo copper and zinc mine[J].Gold Science and Technology,28(2):246-254.
Dijkstra E W,1959.A note on two problems in connexion with graphs[J].Numerical Mathematics,1959:269-271.
Dong L J, Hu Q C, Tong X J,et al,2020.Velocity-free MS/AE source location method for three-dimensional hole-containing structures[J].Engineering,6(7):827-834.
Hu Q C, Dong L J,2020.Acoustic emission source location and experimental verification for two-dimensional irregular complex structure[J].IEEE Sensors Journal,20(5):2679-2691.
Huang Guojiao, Ba Jing, Qian Wei,2020.Simultaneous inversion for anisotropic velocity structure and microseismic location in layered TI media[J].Chinese Journal of Geophysics,63(7):2846-2857.
Jiang Tianqi, Pei Shuojin,2019.Micro-seismic event location based on Newton iteration method and grid-search method[J].Journal of Mining Science and Technology,4(6):480-488.
Jiang Yuanjian, Wang Liguan, Peng Ping’an,et al,2019.Mine microseismic location method based on layered wave velocity model[J].Nonferrous Metal Engineering,9(12):96-105.
Li N, Wang E Y, Ge M C,et al,2014.A nonlinear microseismic source location method based on simplex method and its residual analysis[J].Arabian Journal of Geosciences,7(11):4477-4486.
Li Nan, Wang Enyuan, Ge Maochen,et al,2013.A comprehensive evaluation model of microseismic source location reliability[J].Journal of China Coal Society,38(11):1940-1946.
Li X B, Wang Z W, Dong L J,2016.Locating single-point sources from arrival times containing large picking errors (LPEs):The virtual field optimization method (VFOM)[J].Scientific Reports,6(1):19205.
Liu Zenghua, Peng Qiuling, Li Xin,et al,2020.Acoustic emission source localization in steel plate based on time difference mapping method[J].Journal of Applied Basic Scien-ce and Engineering Science,28(2):475-485.
Oye V, Roth M,2003.Automated seismic event location for hydrocarbon reservoirs[J].Computers & Geosciences,29(7):851-863.
Shang X Y, Tkalčić H,2020.Point-source inversion of small and moderate earthquakes from P-wave polarities and P/S amplitude ratios within a hierarchical Bayesian framework:Implications for the Geysers earthquakes[J].Journal of Geo-physical Research:Solid Earth,125(2):e2019JB018492
Shang Xueyi,Liu Caiyun,Chen Yong,et al,2021.A location method,system,terminal and readable storage medium of acoustic emission/microseismic event for hole contained structure:CN113552536A [P].2021-10-26[2021-12-13].
Wang Guohua,2020.A review of structural damage localization methods based on acoustic emission technology[J].Engineering and Construction,34(6):1115-1118.
Xin Weiyao, Li Jian, Han Yan,et al,2019.Underground source localization method based on adaptive particle swarm optimization[J].Computer System Application,28(12):165-170.
Yao Jinjie, Han Yan,2010.Research on target localization based on particle swarm and Newton iterated algorithm [J].Computer Application Research,27(5):1700-1701,1713.
Zhang Hongshan, Song Wenzhi, Li Qiutao,et al,2016.Analysis of micro-seismicity activity induced by deep orebody mining at Jinqingding gold mine,Shandong Province[J].Gold Science and Technology,24(1):76-79.
戴锐,张达,冀虎,等,2019.采空区微震高精度定位方法研究[J].中国矿业,28(增2):195-199.
党明智,张君,贾明涛,2020.黄土坡铜锌矿微震监测技术应用与灾害预警方法研究[J].黄金科学技术,28(2):246-254.
黄国娇,巴晶,钱卫,2020.层状TI介质中微地震定位和各向异性速度结构同时反演[J].地球物理学报,63(7):2846-2857.
姜天琪,裴烁瑾,2019.基于网格搜索—牛顿迭代法的微震震源定位算法[J].矿业科学学报,4(6):480-488.
蒋元建,王李管,彭平安,等,2019.基于层状波速模型的矿山微震定位方法[J].有色金属工程,9(12):96-105.
李楠,王恩元, Ge Maochen,等,2013.微震震源定位可靠性综合评价模型[J].煤炭学报,38(11):1940-1946.
刘增华,彭秋玲,李欣,等,2020.基于时间差映射方法的钢板声发射源定位[J].应用基础与工程科学学报,28(2):475-485.
尚雪义,刘彩云,陈勇,等,2021.一种含圆孔结构的声发射/微震事件定位方法、系统、终端及可读存储介质:CN113552536A [P].2021-10-26[2021-12-13].
汪国华,2020.基于声发射技术的结构损伤定位方法综述[J].工程与建设,34(6):1115-1118.
辛伟瑶,李剑,韩焱,等,2019.基于自适应粒子群优化算法的地下震源定位方法[J].计算机系统应用,28(12):165-170.
姚金杰,韩焱,2010.基于粒子群和牛顿迭代法的目标定位方法研究[J].计算机应用研究,27(5):1700-1701,1713.
张洪山,宋文志,李秋涛,等,2016.山东金青顶矿区深部矿体开采诱发微震活动分析[J].黄金科学技术,24(1):76-79.
[1] 王旋,王亚变,刘理臣,曹兴,赵立芳,张兆虎. 陇南市尾矿库环境安全现状分析及合理闭库措施探讨[J]. 黄金科学技术, 2019, 27(1): 144-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!