img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (4): 518-531.doi: 10.11872/j.issn.1005-2518.2022.04.064

• 矿产勘查与资源评价 • 上一篇    下一篇

玲珑金矿田含矿断裂的基岩地球化学特征及找矿潜力评价

胡宝群1(),高海东2,王运1,张宝林3,吕古贤4,申玉科4,郭涛4   

  1. 1.东华理工大学地球科学学院,江西 南昌 330013
    2.山西工学院能源学院,山西 朔州 036000
    3.中国科学院地质与地球物理研究所,中国科学院矿产资源研究重点实验室,北京 100029
    4.中国地质科学院地质力学研究所,北京 100081
  • 收稿日期:2021-05-24 修回日期:2021-11-01 出版日期:2022-08-31 发布日期:2022-10-31
  • 作者简介:胡宝群(1965-),男,江西进贤人,博士,教授,博士生导师,从事岩矿地球化学研究工作。bqhu@ecut.edu.cn
  • 基金资助:
    中国地质调查局地质矿产调查评价项目“胶东招平断裂带中段构造解析与靶区验证”(12120113096300)

Bedrock Geochemical Characteristics and Prospecting Potential Evaluation of Ore-Bearing Faults in Linglong Gold Ore-field

Baoqun HU1(),Haidong GAO2,Yun WANG1,Baolin ZHANG3,Guxian LV4,Yuke SHEN4,Tao GUO4   

  1. 1.School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China
    2.College of Energy Industry, Shanxi College of Technology, Shuozhou 036000, Shanxi, China
    3.Key Laboratory of Mineral Resources, Chinese Academy of Sciences, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    4.Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
  • Received:2021-05-24 Revised:2021-11-01 Online:2022-08-31 Published:2022-10-31

摘要:

基岩地球化学方法广泛应用于地质找矿与生产实践,是开展深部找矿预测最直接的方法和手段。通过对玲珑金矿田井下含矿断裂和招平断裂的基岩剖面地球化学特征进行系统研究,得出以下认识:玲珑金矿田原生晕最佳指示元素组合为Au、Ag、Bi、As和Co,且Au-Ag、Au-Bi、Au-As及Au-Co元素之间呈较好的幂指数正相关。根据玲珑金矿田已探明矿脉最佳指示元素组合的统计结果,结合招平断裂基岩剖面地球化学测量结果,发现招平断裂在地表有2处金矿化异常,推测其为矿致异常,反映出该地段具有较好的找矿潜力,特别是前花园村东1021剖面中异常找矿潜力更大。

关键词: 指示元素组合, 基岩地球化学, 矿化异常, 找矿评价, 招平断裂, 玲珑金矿田, 胶东

Abstract:

The mineralization of Linglong gold ore-field is controlled by faults.In the process of gold mineralization,the fault is not only the channel of mineralization fluid,but also the surrounding rocks in direct contact with mineralization fluid.The fluid and wall rocks on both sides of the fault must have metasomatic reactions.Therefore,it is of great significance to study the geochemical characteristics of bedrock in fault profile for metallogenic research and prospecting prediction.Based on the study of geochemical characteristics of bedrock profiles of ore-bearing faults and Zhaoping fault in Linglong gold field,taking ascertain orebody as research template,a comprehensive study of the correlation between Au and other trace elements in orebody-wall rock,lean-rich ore,local-whole was conducted.Combined with mineralogical characteristics and geo-chemical characteristics of element halo of gold deposit,application research on metallogenic prediction of unknown orebodies was performed.Regarding 7 orebodies profile as the research object,by comparing the correlation between Au and trace elements in orebody and surrounding rock,the variation characteristics and correlation of trace elements in orebody profile in local range were analyzed,and the best indicator elements of Au in typical orebodies in the ore field were summarized.According to the gold grade,352 orebodies can be divided into five types (super rich ore,rich ore,lean ore,super lean ore,surrounding rock).The average content of trace elements in various orebodies was counted, and the difference in the indication meaning of trace elements in rich and poor ores was compared.On the premise of a large number of sample data statistics, the correlation between Au and other trace elements in the Linglong ore field was summarized through scatter plots. Combined with the occurrence form of gold and various trace elements, the geological significance of Au and various trace elements, and the diagenesis and mineralization mechanism of Linglong gold ore field were discussed.The above research results were applied to other faults in Linglong gold field,and the primary halo geochemical halo method was used to predict fault mineralization.The following understandings are obtained:The best indicator element combination of primary halo in Linglong gold field is Au,Ag,Bi,As and Co,and the positive correlation of power exponent among Au with Ag,Bi,As and Co elements is good.Gold exists in the form of silver gold ore,mainly in the form of fine grains or veins in the fissures and crystal gaps of pyrite.The geochemical survey of bedrock profile of Zhaoping fault shows two gold mineralization anomalies,which are supposed to be ore-induced anomalies and have good prospecting potential,especially in the 1021 profile of east Qianhuayuancun.Based on the geochemical survey method of bedrock in fault profile,the prospecting object is expanded by changing prospecting into halo,and the deep metallogenic prospect can be predicted according to the difference of halo forming element distribution.

Key words: indicator elements combination, bedrock geochemical, mineralization anomalies, prospecting and evaluation, Zhaoping fault, Linglong gold field, Jiaodong

中图分类号: 

  • P618.51

图1

玲珑金矿田地质简图及大开头矿区89线地质剖面图(据高海东等,2013修编)"

表1

典型矿体剖面成分变化"

采样位置样号岩性点距/mAuAgAsBiCoCuHgMnMoNiPbSbThUVZn

剖面1:

-570 m

175支2

的84川

LL008弱钾化花岗岩00.0340.020.20.0314<0.0051040.33<119<0.056.30.25414
LL009红色强钾化花岗岩5.00.1490.130.10.0821<0.005770.34<117<0.057.10.4238
LL010灰绿色蚀变岩(原岩花岗岩)1.50.7140.181.30.33312<0.0053830.26180.076.61.183524
LL011石英硫化物矿石(矿体)1.552.20016.2083.432.0038150.049451.7216160.334.01.67174
LL012石英硫化物矿石(矿体)1.540.50012.3541.317.7017730.010681.361450.112.70.7654
LL013富硫化物中等硅化花岗质碎裂岩(矿体)1.563.30020.9064.326.1028430.014531.3218100.235.01.11225
LL014中等硅化花岗岩2.00.2960.232.00.32414<0.0051641.511380.063.40.16421

剖面2:

-620 m

175支2

的74川

LL021强钾化花岗岩00.0140.020.40.0216<0.0051330.49220<0.054.90.20428
LL022基性岩脉2.00.0880.030.10.18143<0.0056031.1940120.052.10.657971
LL023中等硅化弱钾化花岗岩3.00.2160.050.90.1812<0.005860.411200.051.50.12416
LL024硅化硫化物(矿体)1.548.3006.0640.627.80196110.008771.2217220.582.40.1759
LL025弱钾化强硅化花岗岩2.00.0820.020.20.1412<0.0051840.452130.051.20.23311
LL026中等硅化花岗岩4.00.0750.650.91.53340.0662070.471830.071.50.36310

剖面3:

-670 m

175支2

的88川

LL036中等钾化花岗岩00.0610.050.70.1162<0.0051310.48214<0.056.00.31413
LL037含矿钾化花岗岩1.04.1902.8118.31.041353<0.0051690.3412230.084.30.23444
LL038石英硫化物(矿体)2.07.2103.4173.83.82632<0.005488.148110.070.80.45388
LL039石英硫化物(矿体)1.56.0001.877.919.65182<0.0051164.82313<0.052.00.68710
LL040硅化、泥化构造岩(矿体)2.013.3504.258.213.4024120.0051033.024340.163.60.751434
LL041强硅化花岗岩1.51.9601.4826.14.63362<0.0054990.328480.097.21.365821
LL042强硅化弱钾化花岗岩2.00.0740.082.00.13213<0.0052240.291300.115.90.26317

剖面4:

-720 m

47支3

的97川

LL101中等钾化花岗岩00.0020.020.20.0123<0.0051650.601220.054.70.16445
LL102弱钾化花岗岩00.0020.020.40.0444<0.0055680.3410<2<0.056.60.403928
LL103中等钾化花岗岩4.00.0040.010.20.0122<0.0051630.33<119<0.055.30.19431
LL104黄铁矿化花岗岩3.02.7403.8524.620.9032511<0.005680.9324170.073.00.49512
LL105强钾化花岗岩1.00.2390.291.60.95194<0.0051190.42115<0.053.30.18310
LL106中等钾化花岗岩2.034.0004.604.615.453433<0.0051640.98317<0.054.60.26512
LL107中等钾化花岗岩3.00.0410.020.10.0427<0.0051250.47<120<0.055.71.34427
LL108花岗岩00.0280.060.30.1536<0.0053940.49123<0.058.30.421722

剖面5:

-620 m

47号脉

87线

LL293钾化花岗岩00.0230.020.80.081<1<0.0051090.61<123<0.056.60.1837
LL294硅化硫化物(矿体)2.50.4660.9822.03.7039<1<0.005250.354140.051.30.1118<2
LL295中等硅化花岗岩2.00.0270.060.40.132<1<0.0052400.28228<0.051.20.3942
LL296弱钾化花岗岩1.00.1050.112.10.2526<0.0052570.34319<0.057.00.3036

图2

矿体剖面中Au元素与微量元素含量变化曲线(a)~(g)为指示意义明显的元素,即与金含量同步升降的元素;(h)~(n)为指示意义弱的元素,即与金含量相关性弱的元素"

表2

矿体指示元素统计"

剖面号矿体及位置最佳指示元素弱指示意义元素指示意义不明的元素
1-570 m175支2的84川Au,Ag,Bi,As,Ni,CoSb,Hg,UCu,Pb,Mn,Mo,Th,V,Zn
2-620 m175支2的74川Au,Ag,Bi,As,SbCo,Ni,Cu,MoHg,Mn,Pb,Th,U,V,Zn
3-670 m175支2的88川Au,Ag,Bi,AsMo,Ni,Co,VCu,Hg,Mn,Pb,Sb,Th,U,Zn
4-720 m47支3的97川Au,Ag,Bi,As,CoCu,MoHg,Mn,Ni,Pb,Sb,Th,U,V,Zn
5-620 m47号脉87线Au,Ag,Bi,As,CoV,NiCu,Hg,Mn,Mo,Pb,Sb,Th,U,Zn
6-570 m50号脉88川Au,Ag,As,Bi,CoCu,Mo,NiHg,Mn,Pb,Sb,Th,U,V,Zn
7-420 m48号脉92线Au,Ag,As,Bi,Co,MoSb,Hg,Cu,Pb,ZnMn,Ni,Th,U,V

表3

玲珑金矿田微量元素含量"

矿体

编号

金含量区间

样品

数量

AuAgAsSbBiHgMnCuPbZnMoCoNiVThU
背景背景区160.0010.010.13<0.050.010.0071462.525220.391.07237.30.27
175号>101335.0708.0660.080.2216.460.010934.118212.90277.0022203.51.11
1~10143.8881.8926.390.114.420.00513468.635181.3558.2111264.00.56
0.1~1.0240.4840.584.800.081.870.0051596.0581110.7618.42384.00.44
0.01~0.10390.0400.070.990.050.130.0071885.520320.482.64275.00.37
<0.01160.0050.020.280.060.030.0051367.117180.391.81263.70.44
47号>1001957.00099.8016.200.07105.000.021528.0603210.9556.006192.10.85
10~100417.2886.4723.900.137.880.01012984.5324992.0327.505103.10.22
1~10132.3762.2123.770.093.720.008268115.12141391.0340.859153.80.38
0.1~1.0310.3640.779.610.061.370.00520158.951190.498.29563.90.25
0.01~0.10460.0380.102.320.060.210.0052085.921330.503.26473.90.31
<0.01210.0040.031.230.050.030.0051575.320270.351.84373.60.28
50号>10113.6008.0741.600.172.150.0051905889.094122.0522.00420.60.10
1~10132.5002.9014.690.100.550.005457297.71971760.876.92342.10.10
0.1~1.0250.2500.445.640.080.340.00548121.426250.633.4810103.40.26
0.01~0.10340.0460.121.240.060.110.00623323.921110.461.68234.10.23
<0.01160.0060.020.380.050.050.0061734.119130.371.38344.60.36
48号1~1017.6709.7140.800.691.290.0127129.04503013.3214.00540.70.30
0.1~1.040.4371.7422.900.220.650.01222043.36391 7871.2521.75453.40.24
0.01~0.10120.0260.121.380.060.110.0052414.027350.392.33345.60.35
<0.0180.0040.030.190.050.030.0051321.52690.421.13136.90.34

图3

基岩样品中Au元素与其他元素之间的相关性图"

图4

金矿物的赋存状态"

表4

招平断裂2个基岩剖面的元素含量变化"

剖面编号

及位置

样品

编号

采样

位置

点位

/m

AuAgAsBiCoCuHgMnMoNiPbThUVZn
1012剖面(郭家埠南侧小公路)1012-5钾化碎裂花岗岩1640.0010.020.20.1543<0.0051660.1921103.20.203550
1012-7绢英岩化碎裂岩1970.0170.040.10.15314<0.0057300.859143.61.062270
1012-7C白色断层泥1970.0080.111.40.25518<0.0058310.6414482.60.802461
1012-8褐铁矿化绢英岩1920.0070.050.30.0526<0.0052 7201.324252.32.031163
1012-9褐铁矿化绢英岩199<0.0010.010.10.0212<0.0058400.543112.40.271415
1012-10褐铁矿化绢英岩化花岗岩200<0.0010.010.10.0111<0.0058461.132118.00.361011
1012-12弱绢英岩化碎裂花岗岩218.5<0.0010.010.10.01<11<0.0053820.361153.90.28211
1012-14绢英岩化碎裂岩2680.0060.020.30.1541<0.0051 0500.833133.00.221313
1012-16糜棱岩化花岗岩4460.0010.010.10.01<11<0.005750.24<1338.11.55233
1021剖面(前花园村东300 m处公路旁)1021-1强钾化花岗岩53<0.0010.091.10.03<17<0.0051480.441195.40.61118
1021-2褐铁矿化硅化花岗岩580.4470.4429.42.45175<0.005691.201713.90.46357
1021-3钾化绢英岩化花岗岩700.0090.031.30.11<19<0.005970.832196.50.29215
1021-5绢英岩3010.0010.090.30.25<112<0.005830.301256.40.21441
1021-8钾化花岗岩337<0.0010.091.40.06<19<0.005470.422815.10.204182

图5

招平断裂2个基岩剖面的元素含量变化"

Chen Yanjing, Pirajno Franeo, Lai Yong,et al,2004.Metallogenic time and tectonic setting of the Jiaodong gold province,eastern China[J].Acta Petrologica Sinica,20(4):907-922.
Deng Jun, Yang Liqiang, Liu Wei,et al,2001.Gold origin and fluid ore-forming effect of Zhao-Ye ore deposits concentrating area in Jiaodong,Shandong,China[J].Chinese Journal of Geology,36(3):257-268.
Fan Hongrui, Hu Fangfang, Yang Jinhui,et al,2005.Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong Province[J].Acta Petrologica Sinica,21(5):1317-1328.
Gao Haidong, Hu Baoqun, Guxian Lü,et al,2013.Trace element characteristics of the No.47 vein in dakaitou ore districat of Linglong gold deposit[J].Journal of Geomechanics,19(1):53-62.
Gao Haidong, Hu Baoqun, Guxian Lü,et al,2020.Geochemical characteristics and deep prediction of tectonic alteration rocks in No.50 vein of the Linglong gold deposit,Shandong Province[J].Geological Bulletin of China,39(11):1793-1806.
Hu Baoqun, Bai Lihong,2000.Characteristics of bismuth in gold deposits of Chifeng district,Inner Mongolia[J].Geophyisical and Geochemical Exploration,(3):208-211.
Hu Baoqun, Gao Haidong, Shen Yuke,et al,2013.Gold occurrence characteristics and their genetic significance in Dakaitou district of Linglong gold ore-deposit[J].Journal of East China Institute of Technology (Natural Science),36(4):357-363.
Hu Baoqun, Gao Haidong, Shen Yuke,et al,2014.Bi anomaly of the Dakaitou ore district in the Linglong gold mine and its indication significance[J].Geophysical and Geochemical Exploration,38(6):1134-1139.
Hu Baoqun, Gao Haidong, Wang Yun,et al,2021.A preliminary study on the Mesozoic massive gold metallogenic mechanism of deep-large fault coupling with critical water in Jiaodong area,China[J].Journal of Geomechanics,27(4):585-595.
Hu Baoqun, Guxian Lü, Sun Zhanxue,et al,2011.The theory of water phase transitions controlling hydrothermal mineralization[J].Geological Bulletin of China,30(4):565-572.
Hu Baoqun, Wang Qian, Guxian Lü,et al,2017.Depressurization and related phase transition in the lithosphere[J].Earth Science Frontiers,24(2):31-39.
Li Chao, Liu Yongjun, Li Haiyang,et al,2021.Geochemistry of stream sediment and metallogenic prognosis of gold-polymetallic ore deposits in Weiziyu area,Liaoning Province [J].Journal of East China University of Technology(Natural Science),44(2):140-149.
Li Hongkui, Yu Xuefeng, Zhuo Chuanyuan,et al,2017.Metallogenic system of Jiaodong gold deposit in Shandong Province[J].Shandong Land and Resources,33(7):1-6.
Li Hui, Yu Bin, Li Deliang,et al,2013.A new prognostic method using structure superimposed halo in regional metallogenic belt[J].Geophysical and Geochemical Exploration,37(2):189-193.
Li Hui, Zhang Guoyi, Yu Bin,et al,2010.Structural superimposed halos method for prospecting blind ore-body in the deep of ore districts[J].Earth Science Frontiers,17(1):287-293.
Li Hui, Zhang Wenhua, Liu Baolin,et al,1999.The study on axial zonality sequence of primary halo and some criteria for the application of this sequence for major types of gold deposits in China[J].Geology and Prospecting,35(1):32-35.
Liu Xiangpeng, Wang Xi, Song Yingxin,et al,2017.The characteristics of altered surrounding rocks in Xiling extra big gold deposit,northwest of Jiaodong[J]. Journal of East China Institute of Technology(Natural Science Edition),40(3):225-236.
Guxian Lü, Wei Changshan, Guo Tao,et al,2004.Primary research on geologic events of gold metallogenesis in East Shandong[J].Gold Geology,10(2):1-7.
Ning Juntao, Guo Xiyun, Fu Gonggu,et al,2012.The marked characteristics of the pyrite of gold ore genesis and mineral exploration[J].Journal of East China Institute of Technology(Natural Science),35(4):352-357.
Niu S Y, Chen C, Zhang J Z,et al,2019.The thermal and dynamic process of core mantle crust and the metallogenesis of Guojiadian mantle branch in northwestern Jiaodong[J].Minerals,9(4):249.
Song Mingchun, Yi Pihou, Cui Shuxue,et al,2013.Thermal uplifting-extension ore-forming theory and its prospecting significance in Jiaodong gold deposit[J].Shandong Land and Resources,29(7):1-12.
Wang Anping, Yu Honglin, Yao Jie,2002.The characteristics of chalcopyrite in Linglong gold field,Zhaoyuan,Shandong Province[J].Gold,23(12):10-11.
Wang Jian, Zhu Lixin, Ma Shengming,et al,2020.Hydrothermal alteration associated with Mesozoic Linglong-type grannite-hosting gold mineralization at the Haiyu gold deposit,Jiaodong gold province[J].Geological Bulletin of China,39(11):1807-1826.
Wang Shijin, Wang Laiming, Wan Yusheng,et al,2009.Study on intrusive rocks forming period and stages division in Ludong area[J].Shandong Land and Resources,25(12):8-25.
Wang Xi, Hu Baoqun, Zhang Zhihang,et al,2014.Altered rock characteristics and their prospecting significance in Guojiabu district of Zhao-Ping francture[J].Gold,35(11):14-20.
Yang Deping, Yu Xuefeng, Wang Lingang,et al,2020.A study of geochemical zonation of primary halos in the Qujia gold deposit,Laizhou,Shandong Province,and its geological significance[J].Acta Geoscientica Sinica,41(3):337-356.
Yang Liqiang, Deng Jun, Wang Zhongliang,et al,2014.Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China[J].Acta Petrologica Sinica,30(9):2447-2467.
Yu G P, Xu T, Ai Y S,et al,2020.Significance of crustal extension and magmatism to gold deposits beneath Jiaodong Peninsula,eastern North China Craton:Seismic evidence from receiver function imaging with a dense array[J].Tectonophysics,789:228532.
Zhang Baolin, Guxian Lü, Liang Guanghe,et al,2019.Preliminary study on deep geophysical exploration model of gold ore fields in eastern Shandong,China[J].Journal of Geomechanics,25(Supp.1):150-156.
Zhang Dehong, Zhang Qingxi,1998.Rock geochemistry survey and its application in Linglong gold field[J].Shandong Land and Resources,14(1):47-52.
Zhang Zhihang, Hu Baoqun, Wang Xi,et al,2015.The wall rock alteration and its geochemical characteristics of Zhaoping fault zone in Jiaodong[J].Journal of Geomechanics,21(1):13-20.
Zhou Yueqiang, Xu Deru, Dong Guojun,et al,2019.Structural evolution of the Changsha-Pingjiang fault zone and its controlling on mineralization[J].Journal of East China University of Technology(Natural Science),42(3):201-208.
陈衍景, Pirajno Franeo,赖勇,等,2004.胶东矿集区大规模成矿时间和构造环境[J].岩石学报,20(4):907-922.
邓军,杨立强,刘伟,等,2001.胶东招掖矿集区巨量金质来源和流体成矿效应[J].地质科学,36(3):257-268.
范宏瑞,胡芳芳,杨进辉,等,2005.胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J].岩石学报,21(5):1317-1328.
高海东,胡宝群,吕古贤,等,2013.玲珑金矿大开头矿区47 号脉微量元素特征[J].地质力学学报,19(1):53-62.
高海东,胡宝群,吕古贤,等,2020.山东玲珑金矿50号脉三维构造蚀变岩地球化学特征及深部预测[J].地质通报,39(11):1793-1806.
胡宝群,白丽红,2000.内蒙古赤峰地区金矿床中铋的特征[J].物探与化探,(3):208-211.
胡宝群,高海东,申玉科,等,2013.玲珑金矿大开头矿区金的赋存特征及成因意义[J].东华理工大学学报(自然科学版),36(4):357-363.
胡宝群,高海东,申玉科,等,2014.玲珑金矿大开头矿区Bi特征及指示意义[J].物探与化探,38 (6):1134-1139.
胡宝群,高海东,王运,等,2021.胶东中生代巨量金矿堆积的深大断裂—临界水耦合成矿机制新探[J].地质力学学报,27(4):585-595.
胡宝群,吕古贤,孙占学,等,2011.热液矿床水相变控矿理论初探[J].地质通报,30(4):565-572.
胡宝群,王倩,吕古贤,等,2017.岩石圈中的降压作用及其相变过程[J].地学前缘,24(2):31-39.
李超,刘永俊,李海洋,等,2021.辽宁省苇子峪地区水系沉积物地球化学特征及金多金属找矿远景预测[J].东华理工大学学报(自然科学版),44(2):140-149.
李洪奎,于学峰,禚传源,等,2017.山东胶东金矿成矿理论体系[J].山东国土资源,33(7):1-6.
李惠,禹斌,李德亮,等,2013.成矿区带构造叠加晕找矿预测新方法[J].物探与化探,37(2):189-193.
李惠,张国义,禹斌,等,2010.构造叠加晕找盲矿法及其在矿山深部找矿效果[J].地学前缘,17(1):287-293.
李惠,张文华,刘宝林,等,1999.中国主要类型金矿床的原生晕轴向分带序列研究及其应用准则[J].地质与勘探,35(1):32-35.
刘祥朋,王玺,宋英昕,等,2017.胶西北西岭特大型金矿床蚀变围岩特征研究[J].东华理工大学学报(自然科学版),40(3):225-236.
吕古贤,韦昌山,郭涛,等,2004.胶东矿集区金矿成矿地质事件研究初探[J].黄金地质,10(2):1-7.
宁钧陶,郭喜运,符巩固,等,2012.黄铁矿的标型特征及其对金矿床成因与找矿勘查的启示[J].东华理工大学学报(自然科学版),35(4):352-357.
宋明春,伊丕厚,崔书学,等,2013.胶东金矿“热隆—伸展”成矿理论及其找矿意义[J].山东国土资源,29(7):1-12.
王安平,于洪林,姚杰,2002.山东招远玲珑金矿田黄铜矿特征研究[J].黄金,23(12):10-11.
王建,朱立新,马生明,等,2020.胶东三山岛北海域金矿床热液蚀变作用研究[J].地质通报,39(11):1807-1826.
王世进,王来明,万渝生,等,2009.鲁东地区侵入岩形成时代和期次划分——锆石SHRIMP U-Pb年龄的证据[J].山东国土资源,25(12):8-25.
王玺,胡宝群,张志航,等,2014.招平断裂郭家埠地区蚀变岩特征及找矿意义[J].黄金,35(11):14-20.
杨德平,于学峰,王林钢,等,2020.山东莱州曲家金矿原生晕地球化学分带性研究及地质意义[J].地球学报,41(3):337-356.
杨立强,邓军,王中亮,等,2014.胶东中生代金成矿系统[J].岩石学报,30(9):2447-2467.
张宝林,吕古贤,梁光河,等,2019.胶东金矿田的深部地球物理勘查模式初步研究[J].地质力学学报,25(增1):150-156.
张德宏,张庆禧,1998.玲珑金矿田岩石地球化学测量及其找矿效果[J].山东国土资源,14(1):47-52.
张志航,胡宝群,王玺,等,2015.胶东招平断裂带围岩蚀变地球化学特征[J].地质力学学报,21(1):13-20.
周岳强,许德如,董国军,等,2019.湖南长沙—平江断裂带构造演化及其控矿作用[J].东华理工大学学报(自然科学版),42(3):201-208.
[1] 李健, 宋明春, 王昌伟, 王润生, 雷鸣, 崔庆意, 李杰, 李世勇. 胶东三山岛断裂带金矿床蚀变矿物勘查标识[J]. 黄金科学技术, 2024, 32(5): 749-767.
[2] 董磊磊, 白鑫, 宋明春. 胶东中生代岩浆岩金等元素组成及其对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 768-780.
[3] 胡文萱, 宋明春, 李杰, 董磊磊, 赵润芊, 张亮亮, 李健, 白天慧. 胶东金矿成矿物质来源:来自与金成矿有关地质单元金含量的约束[J]. 黄金科学技术, 2024, 32(5): 781-797.
[4] 王斌, 宋明春, 刘志宁, 李健, 董磊磊, 张艺多, 蒋雷, 王润生, 董小涛, 刘家良. 胶东地区早白垩世周官高镁闪长岩体年代学、地球化学特征及其构造意义[J]. 黄金科学技术, 2024, 32(5): 798-812.
[5] 俞炳, 丁正江, 陈伟军, 李肖, 刘彩杰, 薛建玲, 曾庆栋, 范宏瑞, 吴金检, 张琪彬. 胶东西岭金矿床黄铁矿热电性特征及深部找矿意义[J]. 黄金科学技术, 2024, 32(2): 207-219.
[6] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[7] 李逸凡,李洪奎,韩学林,耿科,张玉波,陈国栋. 胶东夏甸金矿床成因:流体包裹体及同位素证据[J]. 黄金科学技术, 2021, 29(2): 184-199.
[8] 张振, 宁生元, 徐增田. 胶东玲珑九曲金矿床载金黄铁矿矿物学特征及其深部找矿意义[J]. 黄金科学技术, 2020, 28(3): 328-336.
[9] 陈玉民,曾庆栋,孙之夫,王昭坤,范宏瑞,肖风利,褚少雄. 胶东金地球化学背景研究[J]. 黄金科学技术, 2019, 27(6): 791-801.
[10] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[11] 孙伟清,刘燊,冯彩霞,范焱,刘永昌. 招平断裂带中段金矿床控矿条件与成矿规律研究[J]. 黄金科学技术, 2019, 27(3): 315-327.
[12] 刘诗鹏,王树亚,冯欣欣,殷传印. 胶东三山岛西岭金矿区NW向断裂带的确定:综合物探证据[J]. 黄金科学技术, 2019, 27(1): 25-32.
[13] 梁光河. 郯庐断裂带的几个关键问题探讨[J]. 黄金科学技术, 2018, 26(5): 543-558.
[14] 肖风利,曾庆栋,马凤山,王昭坤,孙之夫,孙宗峰. 胶东西北部重要金成矿断裂带特征[J]. 黄金科学技术, 2018, 26(4): 396-405.
[15] 宋明春,宋英昕,丁正江,李世勇. 胶东金矿床:基本特征和主要争议[J]. 黄金科学技术, 2018, 26(4): 406-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!