img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (4): 559-573.doi: 10.11872/j.issn.1005-2518.2022.04.181

• 采选技术与矿山管理 • 上一篇    下一篇

基于离散元的花岗岩热敏感性及裂纹扩展研究

李明兼(),尹土兵(),谭小松,杨政   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2021-11-26 修回日期:2022-04-11 出版日期:2022-08-31 发布日期:2022-10-31
  • 通讯作者: 尹土兵 E-mail:limingjian@csu.edu.cn;tubing_yin@mail.csu.edu.cn
  • 作者简介:李明兼(1997-),男,云南曲靖人,硕士研究生,从事高温高压下岩石力学研究工作。limingjian@csu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“深部岩石非稳态热—力耦合下的动载响应机理及试验研究”(41972283)

Study on Thermal Sensitivity and Crack Propagation of Granite Based on Discrete Element Method

Mingjian LI(),Tubing YIN(),Xiaosong TAN,Zheng YANG   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2021-11-26 Revised:2022-04-11 Online:2022-08-31 Published:2022-10-31
  • Contact: Tubing YIN E-mail:limingjian@csu.edu.cn;tubing_yin@mail.csu.edu.cn

摘要:

在一定应力状态下,热诱导产生的应力场和初始应力场相叠加,导致岩石中裂纹萌生,对岩石的力学性质造成影响。基于离散元方法,在不同初始应力状态下,对含有不同倾角预制裂纹模型的热裂过程进行研究。对相关热特征值进行分析,并根据Det.σij )准则,结合第二不变量的演化过程,对热裂纹的扩展路径进行理论分析。结果表明:高应力状态下,热敏感性较强(起裂温度较低,裂纹扩展温度区间靠前,裂纹扩展剧烈),峰值温度较低,而峰值热应力较高;不同角度的预制裂纹也会影响相关热特征值,在同一初始应力状态下,随着预制裂纹角度的增加,热敏感性降低;热裂纹首先在预制裂纹尖端形成,随着温度的升高,应力第二不变量的分布发生改变,热裂纹在第二不变量最大处扩展。研究结果对深部热力破岩和岩石工程稳定性具有一定借鉴意义。

关键词: 热力致裂, PFC, 热特征值, 热敏感性, 裂纹扩展, 应力第二不变量, 离散元方法

Abstract:

Under a certain stress state,the thermal induced stress field and the initial stress field are superimposed,resulting in the initiation of new thermal cracks on the basis of the original cracks,which affects the mechanical properties of the rock.However,the effect of thermal stress field can also be applied to rock crushing.It is necessary to study the fracture caused by thermal and mechanical action of rock.Due to the limited monitoring technology of the experiment under high temperature,the relevant research is difficult to carry out.Using the method of combining experiment and simulation,based on the experiment and the discrete element method,the cracking process caused by heat and force of prefabricated crack model with different inclination angles was studied under different initial stress states. The relevant thermal eigenvalues were analyzed,and the propagation path of thermal crack was theoretically analyzed according to the Det.(σij) fracture criterion and the evolution process of the second invariant in the heating process.The results show that under the high stress state,the thermal sensitivity is strong (the crack initiation temperature is low,the crack propagation temperature range is in the front,and the crack propagation process is intense),the peak temperature is low,but the peak thermal stress is high.Prefabricated cracks with different angles will also affect the relevant thermal eigenvalues. Under the same initial stress state,with the increase of prefabricated crack angle,the thermal sensitivity de-creases.Moreover,the peak temperature has a similar law.When the crack initiation state is reached,the thermal crack first forms at the tip of the prefabricated crack.With the increase of temperature,the distribution of the second invariant of stress changes,and the thermal crack will expand at the maximum of the second invariant.The research results have certain reference significance for deep thermal rock breaking and rock engineering stability.

Key words: cracking due to thermal and stress, PFC, thermal eigenvalue, thermal sensitivity, crack propagation, second invariant of stress, discrete element method

中图分类号: 

  • TD313

图1

花岗岩成分分析"

图2

INSTRON 1346试验机及数据采集系统"

表1

单轴压缩力学参数"

温度/℃峰值强度/MPa峰值应变/%弹性模量/GPa
201240.5431.22
1001210.5530.03
2001140.5927.96
3001050.6623.27
400960.6821.11

图3

二维离散元表征模型"

表2

模型结构微观参数"

岩石组分占比/%颗粒半径/mm热膨胀系数/(K-1导热系数/(W·m-1·K-1比热/(J·kg-1·K-1密度/(kg·m-3
石英40.90.40~0.5524.3×10-6
长石38.40.30~0.408.7×10-63.51 0152 700
云母20.70.30~0.403.0×10-6

表3

模型粘结参数"

参数数值
k154.3
k2129
b0.572
emod20.7e9
pb_emod24.3e9
kratio2.6
pb_ten11.7e7
pb_coh6.50e7

图4

试验加载的应力—应变曲线"

图5

模拟加载的应力—应变曲线"

图6

试验结果与模拟破坏模式对比"

图7

离散元模型示意图"

图8

模型的裂纹萌生事件数—温度关系图(α=45°)"

图9

含有45°预制裂隙模型的温度—应力曲线(α=45°)"

表4

45°预制裂纹的热特征值"

初始轴向

应力/MPa

起裂温度/℃

扩展温度

区间/℃

峰值温度/℃

峰值热

应力/MPa

20216-40082
40122300~40035289
6022250~35026792
8020150~25014095

图10

起裂温度变化"

图11

峰值温度变化"

图12

峰值热应力变化"

图13

模型的裂纹萌生事件数—温度关系图"

图14

模型的热特征值"

图15

宏观裂纹种类"

图16

含30°、45°和60°预制裂隙模型在不同初始应力状态下的裂纹扩展模式"

图17

热力致裂最终裂纹扩展模式"

图18

第二不变量演化图"

Diederichs M S, Kaiser P K, Eberhardt E,2004. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation [J].International Journal of Rock Mechanics and Mining Sciences,41(5):785-812.
Eberhardt E, Stead D, Stimpson B,et al,1998. Identifying crack initiation and propagation thresholds in brittle rock [J].Canadian Geotechnical Journal,35(2):222-233.
Fairhurst C E, Hudson J,1999.Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,36(3):281-289.
Fei Y W,1995.Thermal expansion[C]//Mineral physics and crystallography:A handbook of physical constants,AGU Reference Shelf 2.Washington:The American Geophysical Union,2:29-44.
Guo Qifeng, Wu Xu, Cai Meifeng,et al,2019.Crack initiation mechanism of pre-existing cracked granite[J].Journal of China Coal Society,44(Supp.2):84-91.
Hazzard J F, Young R P,2000.Simulating acoustic emissions in bonded-particle models of rock[J].International Journal of Rock Mechanics and Mining Sciences,37(5):867-872.
Jiang Mingjing, Chen He, Zhang Ning,et al,2014.Distinct element numerical analysis of crack evolution in rocks containing pre-existing double flaw[J].Rock and Soil Mechanics,35(11):3259-3268.
Lockner D A,1993.The role of acoustic emission in the study of rock fracture[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,30(7):883-899.
Martin C D, Christiansson R,2009. Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock [J].International Journal of Rock Mechanics and Mining Sciences,46(2):219-228.
Ming X, Zhao C, Hobbs B E,2014.Particle simulation of thermally-induced rock damage with consideration of temperature-dependent elastic modulus and strength[J].Computers and Geotechnics,55:461-473.
Pan Pengzhi, Ding Wuxiu, Feng Xiating,et al,2008.Research on influence of pre-existing crack geometrical and material properties on crack propagation in rocks[J].Chinese Journal of Rock Mechanics and Engineering,27(9):1882-1889.
Papadopoulos G,1993.Fracture Mechanics[M]//The Experimental Method of Caustics and the Det.-Criterion of Fracture.New York:Springer-Verlag: 211-222.
Peng J, Rong G, Tang Z C,et al,2019.Microscopic characterization of microcrack development in marble after cyclic treatment with high temperature[J].Bulletin of Engineering Geology and the Environment,78(8):5965-5976.
Potyondy D O, Cundall P A,2004.A bonded-particle model for rock[J].International Journal of Rock Mechanics and Mining Sciences,41(8):1329-1364.
Sun Qiang, Zhang Zhizhen, Xue Lei,et al,2013. Physico-mechanical properties variation of rock with phase transformation under high temperature[J].Chinese Journal of Rock Mechanics and Engineering,35(5):935-942.
Wanne T S, Young R P,2008.Bonded-particle modeling of thermally fractured granite[J].International Journal of Rock Mechanics and Mining Sciences,45(5):789-799.
Wu Yun, Li Xiaozhao, Huang Zhen,et al,2020.Deformation and failure characteristics of granite under uniaxial compression after high temperature[J].Journal of Engineering Geology,28(2):240-245.
Xu X L, Gao F, Shen X,et al,2010. Research on mechanical characteristics and micropore structure of granite under high-temperature[J].Rock and Soil Mechanics,31(6):1752-1758.
Xu Z Y, Li T B, Chen G Q,et al,2018.The grain-based model numerical simulation of unconfined compressive strength experiment under thermal-mechanical coupling effect[J]. KSCE Journal of Civil Engineering,22(8):1-12.
Yang Guitong,1980.Elastic-Plastic Mechanics[M].Beijing:People’s Education Press.
Yang S Q, Huang Y H, Jing H W,et al,2014.Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression[J].Engineering Geology,178(21):28-48.
Yin T B, Zhang S S, Li X B,et al,2018.A numerical estimate method of dynamic fracture initiation toughness of rock under high temperature[J].Engineering Fracture Mechanics,204:87-102.
Yin Tubing, Li Xibing, Yin Zhiqiang,et al,2012.Study and comparison of mechanical properties of sandstone under static and dynamic loadings after high temperature[J].Chinese Journal of Rock Mechanics and Engineering,31(2):273-279.
Yu Qinglei, Zheng Chao, Yang Tianhong,et al,2012.Meso-structure characterization based on coupled thermal-mechanical model for rock failure process and applications[J].Chinese Journal of Rock Mechanics and Engineering,31(1):42-51.
Zhang Zhizhen, Gao Feng, Xu Xiaoli,2010.Acoustic emission characteristics and thermodynamic coupling model of granite under uniaxial compression[J].Chinese Journal of Underground Space and Engineering,6(1):70-74.
Zhao Z H,2016.Thermal influence on mechanical properties of granite:A microcracking perspective[J].Rock Mechanics and Rock Engineering,49(3):747-762.
Zhou Guanglei, Xu Tao, Zhu Wancheng,et al,2017.A time-dependent thermo-mechanical creep model of rock[J].Engineering Mechanics,34(10):1-9.
Zhu Hehua, Yan Zhiguo, Deng Tao,et al,2006. Testing study on mechanical properties of tuff,granite and breccia after high temperatures[J].Chinese Journal of Rock Mechanics and Engineering,25(10):1945-1950.
郭奇峰,武旭,蔡美峰,等,2019.预制裂隙花岗岩的裂纹起裂机理试验研究[J]. 煤炭学报,44(增2):84-91.
蒋明镜,陈贺,张宁,等,2014.含双裂隙岩石裂纹演化机理的离散元数值分析[J].岩土力学,35(11):3259-3268.
潘鹏志,丁梧秀,冯夏庭,等,2008.预制裂纹几何与材料属性对岩石裂纹扩展的影响研究[J].岩石力学与工程学报,27(9):1882-1889.
孙强,张志镇,薛雷,等,2013.岩石高温相变与物理力学性质变化[J].岩石力学与工程学报,32(5):935-942.
吴云,李晓昭,黄震,等,2020.高温作用后花岗岩单轴压缩下变形破坏特征研究[J].工程地质学报,28(2):240-245.
杨桂通,1980. 弹塑性力学[M].北京:人民教育出版社.
尹土兵,李夕兵,殷志强,等,2012.高温后砂岩静,动态力学特性研究与比较[J].岩石力学与工程学报,31(2):273-279.
于庆磊,郑超,杨天鸿,等,2012.基于细观结构表征的岩石破裂热—力耦合模型及应用[J].岩石力学与工程学报,31(1):42-51.
张志镇,高峰,徐小丽,2010.花岗岩单轴压缩的声发射特征及热力耦合模型[J].地下空间与工程学报,6(1):70-74.
周广磊,徐涛,朱万成,等,2017.基于温度—应力耦合作用的岩石时效蠕变模型[J].工程力学,34(10):1-9.
朱合华,闫治国,邓涛,等,2006.3种岩石高温后力学性质的试验研究[J].岩石力学与工程学报,25(10):1945-1950.
[1] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[2] 刘大兵, 何银东. 截齿截割角度对截割性能的影响研究[J]. 黄金科学技术, 2024, 32(1): 91-99.
[3] 李杰林,王京瑶,肖益盖,李小双. 不同应力路径下岩石细观力学性能离散元研究[J]. 黄金科学技术, 2023, 31(1): 102-112.
[4] 周可凡,刘科伟,郭腾飞. 基于声发射的倾斜软硬互层岩石破坏特性研究[J]. 黄金科学技术, 2022, 30(6): 923-934.
[5] 李光,马凤山,郭捷,邹龙,寇永渊. 金川二矿区地应力特征及其对巷道变形破坏的影响研究[J]. 黄金科学技术, 2021, 29(6): 817-825.
[6] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[7] 张栩栩,杨仕教,曾佳君,罗可,蒲成志. 含预制缺陷类岩体模型破断试验与分析[J]. 黄金科学技术, 2020, 28(2): 255-263.
[8] 方传峰,王晋淼,李剡兵,贾明涛. 基于PFC2D-DFN的自然崩落法数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 189-198.
[9] 曾晟,王少平,张妮. 冲击荷载下岩石裂纹扩展研究进展[J]. 黄金科学技术, 2019, 27(1): 52-62.
[10] 李响,怀震,李夕兵,张倬瑶. 基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J]. 黄金科学技术, 2019, 27(1): 41-51.
[11] 曾庆田,刘科伟,严体,王李管. 基于多数值模拟方法联合的自然崩落法开采研究[J]. 黄金科学技术, 2015, 23(1): 66-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!