img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (5): 733-742.doi: 10.11872/j.issn.1005-2518.2022.05.031

• 采选技术与矿山管理 • 上一篇    下一篇

富水冰碛层竖井施工过程数值模拟

过江(),蒋倪明,程鑫   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2022-02-22 修回日期:2022-06-15 出版日期:2022-10-31 发布日期:2022-12-10
  • 作者简介:过江(1973-),男,江西弋阳人,博士,教授,从事采矿与岩土工程研究工作。guojiang@csu.edu.cn
  • 基金资助:
    湖南省研究生科研创新项目 “富水破碎土层井筒综合加固技术研究与实践”(QL20210054)

Numerical Simulation Study on Shaft Construction Process of Water-rich Moraine Layer

Jiang GUO(),Niming JIANG,Xin CHENG   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2022-02-22 Revised:2022-06-15 Online:2022-10-31 Published:2022-12-10

摘要:

针对冰碛层围岩固结程度低、围岩力学性质差且内部含冰水积层等特点,分析冰碛层土体条件下竖井施工过程中围岩变形情况,研究施工过程中支护结构受力特性,优化冰碛层土体条件下竖井施工方案。以四川凉山小麻柳尾矿库8#竖井工程为例,结合实际工程情况,利用FLAC3D软件对不同竖井施工方案的施工过程进行数值模拟,得到了竖井施工侧壁围岩随施工过程的变化规律及特征。由数值计算结果和实际施工情况可知,反井导洞扩挖法在冰碛层等弱固结、富水土层的施工效果较好,渗流场孔隙水压力及竖井侧壁围岩应力较小,对周边围岩的扰动较小,能够有效降低土体变形。

关键词: 竖井施工, 冰碛层, 流固分析, 应力分布, 位移变化, 塑性区

Abstract:

As an important part of mine construction,shaft engineering is also a key project to ensure the normal operation of the mine.With the continuous development and utilization of resources,the difficulty of resource extraction also increases,and more and more shaft projects need to be constructed under complex geological conditions.Moraine layer is a special geotechnical material widely distributed in the western region of China,there is more and more construction projects on this type of soil.Compared with the general sur-rounding rock structure,the soil mass of the moraine layer is basically composed of debris,the surrounding rock is mostly in a soft plastic state,the degree of consolidation is low,and the stability of the soil body is poor. The pressure is high,and the general shaft construction method is difficult to apply to the construction of this type of soil.Therefore,in order to improve the construction efficiency of the shaft under the geological conditions of the moraine layer,control the deformation of the surrounding rock during the construction of the shaft under the soil condition of the moraine layer,and optimize the construction plan of the shaft under the soil condition of the moraine layer.Taking the 8# shaft project of Xiaomaliu tailings pond in Sichuan as an example,using the research method of numerical analysis,combined with the actual engineering situation,considering the influence of underground diving in the moraine layer soil on the construction operation of the shaft,the shaft construction process of the vertical shafts by forward excavation method,full-section reverse shaft method and reverse shaft pilot tunnel expansion method were analyzed,and the distribution of pore water pressure,stress,displacement and plastic zone after the construction of the three types of shafts were analyzed.It can be seen from the simulation results that the construction effect of the excavation method is better,followed by the forward excavation method,and the construction effect of the full-section reverse method is the worst.The pore water pressure of the shaft seepage field and the surrounding rock stress on the side wall of the shaft in the construction of the raised shaft excavation method are relatively small,and the maximum deformation of the surrounding rock on the side wall of the shaft is only 4 cm.Similar,the maximum displacement reaches 7 cm.The full-section back-well method has poor construction effect,the groundwater can’t be discharged in time,the pore water pressure on the side wall of the shaft is large,and the deformation of the surrounding rock on the side wall of the shaft is large,reaching 10 cm.Therefore,among the three types of shaft construction schemes,the excavation method of the raised shaft can effectively control the soil deformation around the shaft.

Key words: shaft construction, moraine layer, fluid-solid analysis, stress distribution, displacement change, plastic zone

中图分类号: 

  • TU42

图1

竖井工程覆盖段地质状况"

图2

地下水控制方案示意图"

图3

三维有限元数值分析模型"

图4

围岩样品(a)及试验设备(b)"

表1

土层物理力学参数"

土层类型层厚/m

密度

/(kg?m-3

泊松比

弹性模量

/MPa

黏聚力/kPa

内摩擦角

/(°)

孔隙率

渗透系数

/(m2?Pa-1?s-1

砾砂土层101 9100.327.962340.357.6×10-9
中、强风化玄武岩402 5000.280.00120450.304.0×10-7
冰碛层662 3500.1100.0015300.501.0×10-10

图5

孔隙水压力分布图"

图6

竖井侧壁应力分布图"

图7

竖井侧壁围岩竖向位移变化规律"

图8

竖井侧壁围岩侧向位移变化规律"

图9

围岩塑性区分布状况注:shear 表示剪切破坏; tension 表示拉伸破坏;n 表示处于极限平衡;p 表示过去发生破坏"

表2

各施工方案初始因素数据"

方案

类型

应力/MPa位移/m塑性区体积/m3
竖向侧向竖向侧向拉伸破坏区剪切破坏区
方案A1.911.150.0590.040157.471 149.53
方案B1.101.450.0410.088653.653 299.84
方案C2.231.130.0250.03810.89140.56

表3

评价指标权重结果"

评价指标指标变异性指标冲突性信息量权重/%
应力竖向0.5159.1854.73435.25
侧向0.5603.0011.68112.52
位移竖向0.5004.7542.37817.71
侧向0.5663.0261.71312.76
塑性区拉伸破坏区0.5242.8491.49311.12
剪切破坏区0.5112.7981.42910.64

图10

竖井垮塌段施工示意图"

Bai Minghai, Ji Xiaoming,2015.Numerical simulation analysis of large-span tunnel construction from a small vertical shaft to a horizontal passage in a subway[J].Chinese Journal of Underground Space and Engineering,11(2):469-476.
Fan D Y, Liu X S, Tan Y L,et al,2020. Numerical simulation study on the response characteristics of the surrounding rock of a deep super large section chamber under dynamic and static loads[J].Journal of Central South University,27(12):3544-3566.
Gao Yanbin, Yang Zhengyuan, Liu Chaoming,et al,2020.Pillar uplift in the excavation of a subway station foundation pit in a deep soft soil area[J/OL].Rock and Soil Mechanics,(Supp.2):1-8..
Guz A N,2003.Establishing the fundamentals of the theory of stability of mine workings[J].International Applied Mechanics,39(1):10-15.
Hu Zhongfu, Liu Nianhu,2004.Blasting construction technology of coal bunker pilot tunnel in mining area[J].Mine Pressure and Roof Management,6(2):61-62,64.
Jiang Zhongming, Xiong Xiaohu, Zeng Ling,2014. Analysis of slope unsaturated rainfall infiltration based on FLAC3D platform[J].Rock and Soil Mechanics,35(3):855-861.
Klrkbride M,2002. Ultra-deep shaft construction[J].Tunnels and Tunnelling International,34(6):38-40.
Li Kang, Gao Yongtao, Zhou Yu,et al,2020. Shaft instability mechanism and reinforcement method[J].Journal of Central South University(Natural Science Edition),51(4):1068-1076.
Li Meng, Zheng Yueyu, Yang Xiaoping,et al,2017. Numerical simulation and measurement analysis of circular shaft excavation in deep sand layer[J].Chinese Journal of Underg-round Space and Engineering,13(5):1355-1362.
Li Tingchun, Li Shucai, Chen Weizhong,et al,2004.Fluid-solid coupling analysis of Xiamen subsea tunnel[J].Chinese Journal of Geotechnical Engineering,2(3):397-401.
Li Zijun, Xu Yu, Jia Mintao,et al,2021. Numerical simulation of coordinated mining of geothermal energy in deep mines to control thermal damage[J].Journal of Central South University (Natural Science Edition),52(3):671-680.
Mao Guangning,1994. The development status of surface and blind well drilling methods[J].Well Construction Technology,10(3):44-46.
Tang Zheng, Gao Feng, Cheng Shouye,et al,2019.Analysis of the influence of mudstone formation softening on the stability of raise shaft reaming[J].Coal Engineering,51(12):24-28.
Wang Hailin, Peng Fangle, Guo Jiangang,et al,2008. Numerical simulation study on the impact of pneumatic caisson shaft construction on the surrounding soil environment[J].Chinese Journal of Geotechnical Engineering,30(Supp.1):62-67.
Wu X Y, Jiang L S, Xu X G,et al,2021.Numerical simulation study on the deformation and failure of deep roadway surrounding rock under superimposed dynamic and static loads[J].Journal of Central South University,28(2):543-555.
Xu Shiliang, Zhu Hehua, Ding Wenqi,et al,2009. Rock burst prediction and prevention measures for the ventilation shaft of Qinling highway tunnel[J].Rock and Soil Mechanics,30(6):1759-1763.
Yang Jihua, Wei Bin, Qi Sanhong,et al,2018. Research on key issues in the construction of the ultra-deep shaft of CCS hydropower station in Ecuador with raise boring method[J].Modern Tunnelling Technology,55(6):183-190.
Yu Chenghua, Li Jufeng,2010.Fluid-solid coupling simulation of settlement process of soft foundation treatment based on bagged sand well drainage consolidation method[J].Rock and Soil Mechanics,31(3):939-943.
Zheng Bin, Tang Ming,2020.Physical and mechanical parameters of basalt in Mumbai Peninsula and their correlation [J/OL].Rock and Soil Mechanics,(Supp.2):1-11.
白铭海,吉小明,2015.地铁小竖井转横通道施工大跨隧道数值模拟分析[J].地下空间与工程学报,11(2):469-476.
高彦斌,杨正园,刘朝明,等,2020.深厚软土区某地铁车站基坑开挖的立柱隆起[J/OL].岩土力学,(增2):1-8..
胡中福,刘年虎,2004.采区煤仓导硐爆破施工技术[J].矿山压力与顶板管理,6(2):61-62,64.
蒋中明,熊小虎,曾铃,2014.基于FLAC3D平台的边坡非饱和降雨入渗分析[J].岩土力学,35(3):855-861.
李康,高永涛,周喻,等,2020.立井井筒失稳机理与加固方法[J].中南大学学报(自然科学版),51(4):1068-1076.
李孟,郑月昱,杨小平,等,2017.深厚砂层深挖圆形竖井施工数值模拟及实测分析[J].地下空间与工程学报,13(5):1355-1362.
李廷春,李术才,陈卫忠,等,2004.厦门海底隧道的流固耦合分析[J].岩土工程学报,2(3):397-401.
李孜军,徐宇,贾敏涛,等,2021.深部矿井岩层地热能协同开采治理热害数值模拟[J].中南大学学报(自然科学版),52(3):671-680.
毛光宁,1994.地面及盲井钻井法的发展现状[J].建井技术,10(3):44-46.
汤正,高峰,程守业,等,2019.泥岩地层软化对反井扩孔井帮稳定影响分析[J].煤炭工程,51(12):24-28.
王海林,彭芳乐,郭建刚,等,2008.气压沉箱竖井施工对周边土体环境影响的数值模拟研究[J].岩土工程学报,30(增1):62-67.
徐士良,朱合华,丁文其,等,2009.秦岭公路隧道通风竖井岩爆预测和防治措施[J].岩土力学,30(6):1759-1763.
杨继华,魏斌,齐三红,等,2018.厄瓜多尔CCS水电站超深竖井反井钻机法施工关键问题研究[J].现代隧道技术,55(6):183-190.
余成华,李菊凤,2010.基于袋装砂井排水固结法处理软基的沉降过程流固耦合模拟[J].岩土力学,31(3):939-943.
郑斌,汤铭,2020.孟买半岛玄武岩物理力学参数及其相关性研究[J/OL].岩土力学,(增2):1-11.
[1] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[2] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[3] 白朝阳,王国伟,张鹏,刘拴平. 水平采空区群条件下矿柱回采爆破位置研究[J]. 黄金科学技术, 2017, 25(4): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!