img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (5): 778-786.doi: 10.11872/j.issn.1005-2518.2022.05.053

• 采选技术与矿山管理 • 上一篇    下一篇

复合岩石单轴压缩力学与破坏特性试验研究

赖玉彰1(),支学艺1,舒荣华1,2()   

  1. 1.江西理工大学资源与环境工程学院,江西 赣州 341000
    2.江西理工大学钨资源高效开发及应用技术教育部工程研究中心,江西 赣州 341000
  • 收稿日期:2022-04-18 修回日期:2022-09-14 出版日期:2022-10-31 发布日期:2022-12-10
  • 通讯作者: 舒荣华 E-mail:1029880354@qq.com;srh1025@jxust.edu.cn
  • 作者简介:赖玉彰(1997-),男,江西赣州人,硕士研究生,从事岩石力学研究工作。1029880354@qq.com
  • 基金资助:
    江西省教育厅科技项目“高温岩石宏细观结构特征及其损伤机理研究”(GJJ200856);“装配式桥梁单个装配件工程监管扩展功能研究”(GJJ190501);江西理工大学科研启动项目“不同升温速率处理后岩石的动态力学特性研究”(205200100551);江西省大学生创新创业训练计划项目“温—压耦合作用下混凝土的力学特性及灾变机制研究”(S202110407047)

Experimental Study on Uniaxial Compression Mechanics and Failure Characteristics of Composite Rocks

Yuzhang LAI1(),Xueyi ZHI1,Ronghua SHU1,2()   

  1. 1.School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    2.Engineering Research Center for High-efficiency Development and Application Technology of Tungsten Resources (Jiangxi University of Science and Technology), Ministry of Education of the People’s Republic of China, Ganzhou 341000, Jiangxi, China
  • Received:2022-04-18 Revised:2022-09-14 Online:2022-10-31 Published:2022-12-10
  • Contact: Ronghua SHU E-mail:1029880354@qq.com;srh1025@jxust.edu.cn

摘要:

针对深部高地应力及多岩层复杂地质条件,采用伺服控制试验机对复合岩石进行室内力学试验,重现复合岩石在高应力作用下的破坏过程。复合岩石由强度差且强度呈均匀阶梯型的单岩组成,可划分为蛇纹岩—矽卡岩和蛇纹岩—砂岩。通过单轴压缩试验,获得岩石的单一和复合形态下的力学性质与破坏特性。研究结果表明:在高应力作用下,复合岩石中岩石强度较弱的部分首先发生破坏,且初始裂纹的萌生位置和发展模式直接决定了岩样的最终破坏形态;复合岩石与单一岩石之间的抗压强度存在相关性;利用理想弹簧模型可对复合岩石的弹性模量和峰值应变进行推导。复合岩石的力学特性由强弱端岩石共同决定,存在一定的规律性,其破坏特性与单一岩石相似,但较弱端占主要影响地位。

关键词: 复合岩石, 砂岩, 矽卡岩, 蛇纹岩, 单轴压缩, 力学特性, 破坏特性

Abstract:

Underground geotechnical engineering is often located in high stress stratum,which is easy to cause disasters such as damage and expansion of surrounding rock,large-scale fracture and swelling.With the implementation of construction,it is inevitable to encounter composite rock with more complex stress distribution and rock mass failure.In view of the deep high in-situ stress and multi-rock complex geological conditions,the servo control testing machine was used to conduct indoor mechanical experiments on composite rock,and the failure process of composite rock under high stress was reproduced,so as to provide reference for the stability analysis of composite rock with different materials.Skarn,serpentine and sandstone were selected as the components of composite rock,and their strengths are 80.25 MPa,83.29 MPa and 87.41 MPa respectively.They have a relatively similar strength relationship with uniform gradient increase,which is convenient to compare the mechanical properties of composite rock.The composite rocks can be divided into two types,one is serpentinite and skarn assemblage,the other is serpentinite and sandstone assemblage.The combination mode is 0°contact surface,the volume proportion of components is the same,and the components with weak strength are located in the upper part of the combination rock.Through uniaxial compression tests,the mechanical properties and failure characteristics of skarn,sandstone and serpentinite in single and composite forms were obtained,including uniaxial compressive strength,peak strain,elastic modulus and failure mode.By comparing the stress-strain curves and the actual failure situation,it can be seen that the composite rock and single rock have similar failure modes,with obvious characteristics of compaction stage,elastic stage,plastic stage and failure stage,and the initiation position and development mode of the initial crack directly determine the final failure mode of the rock sample.Based on the experimental data,it is inferred that there is a quantitative relationship between the compressive strength of a single rock and its composite rock,and this inference was verified.According to the homogenization theory,the composite rock was compared to the ideal series spring model,and the formulas of elastic modulus,peak strain and volume of each component in the composite rock awere deduced by using Hooke’s law.The theoretical results are close to the experimental results.Under the condition of uniaxial compression,the compressive stress on the contact surface of composite rock specimen gradually changes to the tensile stress perpendicular to the compression direction,and the composite rock is mainly shear failure.Under the action of high stress,the deformation phenomena of the two kinds of rocks in the composite rock are not synchronous,and the part with low strength is destroyed first,this shows that in composite rocks,weak facies rocks play a major role in the overall strength of composite rocks.

Key words: composite rock, sandstone, skarn, serpentine, uniaxial compression, mechanical properties, failure characteristics

中图分类号: 

  • TU45

表1

3种岩石物理性质"

岩石类型密度/(kg·m-3纵波波速/(m·s-1横波波速/(m·s-1泊松比
砂岩(Ss)3 801.233 950.430.220.22
矽卡岩(Sk)3 213.683 536.230.260.26
蛇纹岩(Spt)3 426.693 780.340.270.27

图1

主要设备及试验装置图"

图2

3种岩石的应力—应变曲线"

表2

岩石的基本力学性质"

岩石类型单轴压缩强度/MPa峰值应变弹性模量/GPa
砂岩87.410.6121.41
矽卡岩80.250.3733.81
蛇纹岩83.290.5025.86
蛇纹石—矽卡岩80.760.4226.01
蛇纹石—砂岩85.480.6023.43

图3

复合岩石的应力—应变曲线"

图4

岩石单轴抗压强度"

图5

岩石峰值应变"

图6

峰值前复合岩石应变曲线"

图7

岩石弹性模量"

图8

复合岩石破坏模式(a)蛇纹岩—矽卡岩;(b)蛇纹岩—砂岩"

图9

复合岩石破坏模式示意图(a)蛇纹岩—矽卡岩;(b)蛇纹岩—砂岩"

图10

理想弹簧串联模型"

Chen Yulong, Zhang Yuning, Li Kebin,et al,2017.Distinct element numerical analysis of failure process of interlayered rock subjected to uniaxial compression[J].Journal of Mining and Safety Engineering,34(4):795-816.
Deng Xubiao, Hu Haijuan, Xu Gang,et al,2012.Numerical simulation for burst failure of two-body rock structure[J].Journa of Mining and Safety Engineering,29(6):833-839.
Dong Jiaxing, Xu Guangli, Li Zhipeng,et al,2014.Classification of failure modes and controlling measures for surrounding rock of large-scale caverns with high geostress[J].Chinese Journal of Rock Mechanics and Engineering,33(11):2161-2170.
Du Kun, Yang Songge, Su Rui,et al,2021.Experimental study on strength and fracture characteristics of hard rock under different stress conditions[J].Gold Science and Technology,29(3):372-381.
Fu Peng, Qi Xianyin, Wang Shengwei,2022.Experimental study on damage evolution law of layered composite rock based on acoustic emission[J].Science Technology and En-gineering,22(19):8431-8438.
Gao Meiben, Li Tianbin, Meng Lubo,et al,2016.The method to identify characteristic stresses of rock in different stages during failure process[J].Chinese Journal of Rock Mechanics and Engineering,35(Supp.2):3577-3588.
Guo Dongming, Zuo Jianping,ZhangYi,et al,2011.Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles[J].Rock and Soil Mechanics,32(5):1333-1339.
Huang Yanhua, Yang Shengqi, Liu Xiangru,2014.Experimental and numerical study on the mechanical characteristics of rock-like materials[J].Journal of Experimental Mechanics,29(2):239-249.
Jia Mingkui,2007.Research on roof falling mechanism of deteriorative strata combination supported by bolts[J].Rock and Soil Mechanics,28(7):1343-1347.
Jiang Mingjing, Wang Huaning, Li Guangshuai,et al,2020.DEM investigation on tunnel excavation of deeply-situated composite rock mass with different strength ratios[J].Chinese Journal of Geotechnical Engineering,42(Supp.2):20-25.
Li Yuan, Qiao Lan, Sui Zhili,et al,2012.Strength analysis of rock material under the brittle shear failure mode[J].Journal of University of Science and Technology Beijing,34(12):1364-1370.
Liu Hanxiang, Zhou Yifei, Li Xin,2021.Shaking table test of dynamic responses of a layered complex rock slope under earthquake[J].Chinese Journal of Rock Mechanics and Engineering,40(4):676-689.
Liu Jie, Wang Enyuan, Song Dazhao,et al,2014.Effects of rock strength on mechanical behavior and acoustic emission characteristics of samples composed of coal and rock[J].Journal of China Coal Society,39(4):685-691.
Liu Quansheng, Wang Zhongwei,2020.Review of numerical modeling based on digital image processing for rock mechanics applications[J].Chinese Journal of Rock Mechanics and Engineering,39(Supp.2):3286-3296.
Liu Xiaoyun, Ye Yicheng, Wang Qihu,et al,2017.Mechanical properties of similar material specimens of composite rock masses with different strengths under uniaxial compression[J].Rock and Soil Mechanics,38(Supp.2):183-190.
Wang Xuyi, Huang Shuling, Ding Xiuli,et al,2021.Study on the effect of inhomogeneous bedding plane on the mechanical properties of uniaxial compression of layered rock mass[J].Rock and Soil Mechanics,42(2):581-592.
Xiao P, Li D Y, Zhao G Y,2020.Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads[J].Journal of Central South University,27(10):2945-2958.
Xing Keke, Wan Zhijun, Zhang Hongwei,et al,2020.Experimental study on strength and deformation characteristics of layered composite sandstone[J].Mining Research and Development,40(7):49-53.
Yang Youkui, Jiang Weimin,1990.A failure criterion of composite rock[J].Journal of Chongqing University (Natural Science Edition),(6):19-25.
Yao Chi, Li Yao, Jiang Qinghui,et al,2015.Mesoscopic model of failure process of interlayered rock compression [J].Chinese Journal of Rock Mechanics and Engineering,34(8):1542-1551.
Yin Guangzhi, Li Xing, Lu Jun,et al,2017.A failure criterion for layered composite rock under true triaxial stress conditions[J].Chinese Journal of Rock Mechanics and Engineering,36(2):261-269.
Zhang Zetian, Liu Jianfeng, Wang Lu,et al,2012.Effects of combination mode on mechanical properties and failure characteristics of the coal-rock combinations[J].Journal of China Coal Society,37(10):1677-1681.
Zhao Guangming, Ma Wenwei, Meng Xiangrui,2015.Damage modes and energy characteristics of rock-like materials under dynamic load[J].Rock and Soil Mechanics,36(12):3598-3605,3624.
陈宇龙,张宇宁,李科斌,等,2017.单轴压缩下软硬互层岩石破裂过程的离散元数值分析[J].采矿与安全工程学报,34(4):795-816.
邓绪彪,胡海娟,徐刚,等,2012.两体岩石结构冲击失稳破坏的数值模拟[J].采矿与安全工程学报,29(6):833-839.
董家兴,徐光黎,李志鹏,等,2014.高地应力条件下大型地下洞室群围岩失稳模式分类及调控对策[J].岩石力学与工程学报,33(11):2161-2170.
杜坤,杨颂歌,苏睿,等,2021.不同应力条件下硬岩强度与破裂特性试验研究[J].黄金科学技术,29(3):372-381.
付鹏,亓宪寅,王胜伟,等,2022.基于声发射的层状复合岩石损伤演化规律实验研究[J].科学技术与工程,22(19):8431-8438.
高美奔,李天斌,孟陆波,等,2016.岩石变形破坏各阶段强度特征值确定方法[J].岩石力学与工程学报,35(增2):3577-3588.
郭东明,左建平,张毅,等,2011.不同倾角组合煤岩体的强度与破坏机制研究[J].岩土力学,32(5):1333-1339.
黄彦华,杨圣奇,刘相如,2014.类岩石材料力学特性的试验及数值模拟研究[J].实验力学,29(2):239-249.
贾明魁,2007.岩层组合劣化型冒顶机制研究[J].岩土力学,28(7):1343-1347.
蒋明镜,王华宁,李光帅,等,2020.深部复合岩体隧道开挖离散元模拟[J].岩土工程学报,42(增2):20-25.
李远,乔兰,隋智力,等,2012.岩石材料脆性剪切破坏模式下的强度分析[J].北京科技大学学报,34(12):1364-1370.
刘汉香,周逸飞,李欣,2021.层状复合岩体边坡动力特性及地震响应特性的振动台试验研究[J].岩石力学与工程学报,40(4):676-689.
刘杰,王恩元,宋大钊,等,2014.岩石强度对于组合试样力学行为及声发射特性的影响[J].煤炭学报,39(4):685-691.
刘泉声,王中伟,2020.基于数字图像处理的岩石数值模拟研究进展[J].岩石力学与工程学报,39(增2):3286-3296.
刘晓云,叶义成,王其虎,等,2017.单轴压缩下不同强度组合复合岩体相似材料试件力学特性研究[J].岩土力学,38(增2):183-190.
王旭一,黄书岭,丁秀丽,等,2021.层状岩体单轴压缩力学特性的非均质层面影响效应研究[J].岩土力学,42(2):581-592.
邢轲轲,万志军,张洪伟,等,2020.层状组合砂岩强度及变形特性试验研究[J].矿业研究与开发,40(7):49-53.
阳友奎,蒋为民,1990.复合岩石的破坏准则[J].重庆大学学报(自然科学版),(6):19-25.
姚池,李姚,姜清辉,等,2015.应力作用下软硬互层岩石破裂过程的细观模拟[J].岩石力学与工程学报,34(8):1542-1551.
尹光志,李星,鲁俊,等,2017.真三轴应力条件下层状复合岩石破坏准则[J].岩石力学与工程学报,36(2):261-269.
张泽天,刘建锋,王璐,等,2012.组合方式对煤岩组合体力学特性和破坏特征影响的试验研究[J].煤炭学报,37(10):1677-1681.
赵光明,马文伟,孟祥瑞,2015.动载作用下岩石类材料破坏模式及能量特性[J].岩土力学,36(12):3598-3605,3624.
[1] 周宇, 李旭, 张鹏姣, 陈需, 王建国, 李强. 水化作用下矽卡岩动态力学响应及能量耗散特征[J]. 黄金科学技术, 2024, 32(4): 610-619.
[2] 付腾飞, 朱德福. 恒湿环境下不同含水饱和度砂岩制备方法及压缩试验[J]. 黄金科学技术, 2024, 32(2): 280-289.
[3] 宋高瑞, 翟新伟, 王二腾, 武磊, 陈万峰, 郑菲菲, 王海东, 王金荣. 甘肃花牛山金矿床成矿流体性质及矿床成因[J]. 黄金科学技术, 2023, 31(6): 873-887.
[4] 李博,邹少浩,许德如,陈喜连,王雪娜,王华. 湘南新田岭矽卡岩型白钨矿床中石榴子石的成分特征及其对钨成矿作用的启示[J]. 黄金科学技术, 2023, 31(2): 232-251.
[5] 刘业繁,石英. 磷石膏胶结充填体动态力学特性研究[J]. 黄金科学技术, 2022, 30(4): 574-584.
[6] 张子洋,曹平,刘智振,肖峰. 泥质粉砂岩蠕变特性及非线性蠕变模型研究[J]. 黄金科学技术, 2022, 30(3): 449-459.
[7] 周盛全, 王瑞, 田诺成, 李栋伟. 冲击荷载作用下热处理花岗岩动态力学特性研究[J]. 黄金科学技术, 2022, 30(2): 222-232.
[8] 肖峰, 曹平, 刘智振, 张子洋. 不同应力上限和加载速率下的黄砂岩疲劳特性研究[J]. 黄金科学技术, 2022, 30(2): 233-242.
[9] 冼源宏,詹华思,李健唐. 广东怀集地区矽卡岩型铁多金属矿床同位素地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(6): 805-816.
[10] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
[11] 卢蓉,马凤山,赵杰,郭捷,顾金钟,黄业强. 充填体室内单轴压缩试验声发射指标特性分析[J]. 黄金科学技术, 2021, 29(2): 218-225.
[12] 邓红卫,田广林. 基于CiteSpace可视化分析下2013~2020年冻融岩石力学热点研究探析[J]. 黄金科学技术, 2021, 29(2): 275-286.
[13] 戴兵, 单启伟, 罗鑫尧, 薛永明. 含孔洞岩石在静应力下的循环冲击试验研究[J]. 黄金科学技术, 2020, 28(4): 531-540.
[14] 毛思羽, 曹平, 李建雄, 欧传景. 基于核磁共振T2谱图的裂隙砂岩疲劳损伤分析[J]. 黄金科学技术, 2020, 28(3): 430-441.
[15] 王程程, 罗鑫尧, 陈科旭, 戴兵, 贺桂成. 含预制裂隙类岩石裂隙演化与破裂特征的试验研究[J]. 黄金科学技术, 2020, 28(3): 421-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!