img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (1): 102-112.doi: 10.11872/j.issn.1005-2518.2023.01.101

• 采选技术与矿山管理 • 上一篇    下一篇

不同应力路径下岩石细观力学性能离散元研究

李杰林1,2(),王京瑶1,肖益盖1,2,李小双3   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.金属矿山安全与健康国家重点实验室,安徽 马鞍山 243000
    3.绍兴文理学院土木工程学院,浙江 绍兴 312000
  • 收稿日期:2022-08-10 修回日期:2022-10-19 出版日期:2023-02-28 发布日期:2023-03-27
  • 作者简介:李杰林(1982-),男,湖南宁远人,博士,副教授,从事采矿工程与岩石力学研究工作。lijielin@163.com
  • 基金资助:
    湖南省自然科学基金项目“寒区冻融循环作用下裂隙岩体损伤局部化效应研究”(2020JJ4712);金属矿山安全与健康国家重点实验室开放课题“深部高应力巷道围岩结构面与危险块体自动识别方法研究”(2020-JSKSSYS-06);浙江省岩石力学与地质灾害重点实验室开放研究基金项目“深部高应力硬岩开挖卸荷的时变力学特性及其变形破裂机理”(ZJRMG-2018-Z03)

Research on Meso-mechanical Properties of Rock Under Different Stress Paths Based on Discrete Element Method

Jielin LI1,2(),Jingyao WANG1,Yigai XIAO1,2,Xiaoshuang LI3   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.State Key Laboratory of Safety and Health for Metal Mines, Maanshan 243000, Anhui, China
    3.School of Civil Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, China
  • Received:2022-08-10 Revised:2022-10-19 Online:2023-02-28 Published:2023-03-27

摘要:

岩体工程中的应力状态对围岩的稳定性具有重要影响。为研究地下巷道中岩体应力状态对围岩稳定性的影响规律,基于离散元理论,对地下巷道开挖过程的应力状态进行分析,开展了围压卸载—轴压增加、围压卸载—轴压不变和围压卸载—轴压减少3种不同卸载路径下的三轴压缩数值模拟试验,并与常规三轴压缩试验进行对比,分析了不同应力路径下的岩石宏观强度特征及细观损伤过程差异性。结果表明:强度准则和应力张量状态不受卸载路径的影响,但不同应力路径下岩体的损伤过程不同,围压卸载—轴压不变应力路径下的微观裂纹发育最密集,而围压卸载—轴压增加应力路径下的裂纹丛集速度最快。研究结果可为地下巷道开挖过程中的围岩应力卸载破坏分析提供参考。

关键词: 应力路径, 离散元, 损伤过程, 强度准则, 应力张量, 裂纹扩展

Abstract:

The stress state of rock mass in engineering has an important influence on the stability of surrounding rock.At present,scholars at home and abroad mainly study the deformation and failure of rock during loading and unloading through rock mechanics tests such as uniaxial compression and conventional triaxial compression.However,in the process of excavation,the stress state of the rock mass in the radial direction is unloaded and the axial direction is loaded,which is more in line with the actual working conditions.Therefore,the results obtained by traditional research methods can’t truly reflect the stress state of rock mass.There are still some limitations to reflect the stress unloading effect and mechanical characteristics of rock excavation in underground engineering by laboratory test.Moreover,due to the differences of test conditions and rock types,the initial damage degree in the process of rock sample processing is different,the load control methods in the test are different and the number of repeated samples is small,which leads to the dispersion error of test results larger than the true range of stress path’s influence on strength.In order to study the influence of stress state on the stability of surrounding rock in rock mass engineering,based on the discrete element theory,the stress state in the process of underground roadway excavation was analyzed,and triaxial compression numerical simulation tests under three different unloading paths,i.e. confining pressure unloading-axial pressure increasing,confining pressure unloading-axial pressure unchanged and confining pressure unloading-axial pressure decreasing,were carried out.Compared with conventional triaxial compression tests,the macroscopic strength characteristics and microscopic damage process differences of rocks under different stress paths were analyzed.The results show that with the increase of confining pressure,the macroscopic crack of rock changes from tensile crack under uniaxial compression to single inclined plane shear crack under low confining pressure,and finally the conjugate crack shape appears under high confining pressure,which indicates that confining pressure is an important factor affecting the crack state of rock.The failure of the same rock under different unloading paths also follows Hoek-Brown strength criterion,that is,different stress paths will not affect the ultimate strength of the rock.The aggregation characteristics of contact force vector projection scatterplots under different unloading paths are similar,so the stress tensor state is not affected by unloading paths,but the damage process is different under different stress paths.Micro-cracks develop most intensively under the stress path of confining pressure and unloading-constant axial pressure.The crack cluster speed is the fastest under the stress path of confining pressure unloading and axial pressure increasing.The research results can provide reference for stress unloading failure analysis of surrounding rock in the process of underground roadway excavation.

Key words: stress path, discrete element, damage process, strength criterion, stress tensor, crack propagation

中图分类号: 

  • TD853

图1

地下巷道卸载过程中围岩应力变化情况"

图2

巷道开挖过程4种应力路径方案"

图3

常规三轴压缩试验方案"

图4

卸载应力路径试验方案"

表1

离散元细观参数取值"

参数名称数值参数名称数值
模型宽度/mm50颗粒刚度比1.5
模型高度/mm100颗粒阻尼系数0.5
颗粒半径/mm1.00~1.66拉伸强度/MPa30
密度/(kg·m-32 500内聚力/MPa30
孔隙度0.1黏结摩擦角/(°)30
摩擦系数0.5黏结有效模量/GPa13.0
有效模量/GPa13.0黏结刚度比6.0

图5

20 MPa围压下砂岩试样的标定结果注:图5(b)为颗粒破坏后的fragment显示,其中同种颜色的颗粒代表相同破碎块体"

图6

常规三轴离散元试验宏观裂纹"

图7

常规三轴离散元试验应力—应变曲线"

图8

GHB准则拟合结果"

图9

围压卸载—轴压不变应力路径下位移、应力及裂纹扩展状况"

图10

围压卸载—轴压增加应力路径下位移、应力及裂纹扩展状况"

图11

围压卸载—轴压减少应力路径下位移、应力及裂纹扩展状况"

图12

法向接触力矢量散点图(a)加载路径对照组;(b)围压卸载—轴压增加;(c)围压卸载—轴压不变;(d)围压卸载—轴压减少"

图13

切向接触力矢量散点图(a)加载路径对照组;(b)围压卸载—轴压增加;(c)围压卸载—轴压不变;(d)围压卸载—轴压减少"

图14

不同应力路径下岩样的裂纹数量及裂纹倾角分布"

Abousleiman R, Walton G, Sinha S,2020.Understanding roof deformation mechanics and parametric sensitivities of coal mine entries using the discrete element method[J].International Journal of Mining Science and Technology,30(1):123-129.
Bai Y L, Wierzbicki T,2010.Application of extended Mohr-Coulomb criterion to ductile fracture[J].International Journal of Fracture,161(1):1-20.
Chen Danxi, Dai Guanyi,1982.Experimental study on compressive deformation of marble under triaxial stress[J].Rock and Soil Mechanics,3(1):27-44.
Chen Yan,2018.Study on Deformation Failure Behaviors and Nonlinear Models for Rocks Under the Influence of Mining Disturbance[D].Beijing:China University of Mining and Technology.
Cheng Y, Wong L N Y,2020.A study on mechanical properties and fracturing behavior of Carrara marble with the flat-jointed model[J].International Journal for Numerical and Analytical Methods in Geomechanics,44(6):803-822.
Coetzee C J,2017.Calibration of the discrete element method[J].Powder Technology,310:104-142.
Crouch S L,1972.A note on post-failure stress-strain path dependence in norite[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,9(2):197-204.
Fan Y, Zheng J W, Cui X Z,et al,2021.Damage zones induced by in situ stress unloading during excavation of diversion tunnels for the Jinping Ⅱ hydropower project[J].Bulletin of Engineering Geology and the Environment,80(6):4689-4715.
Gao Chunyu, Xu Jin, He Peng,et al,2005.Study on mechanical properties of marble under loading and unloading conditions[J].Chinese Journal of Rock Mechanics and Engineering,24(3):456-460.
Hu Guanghui, Xu Tao, Chen Chongfeng,et al,2018.A microscopic study of creep and fracturing of brittle rocks based on discrete element method[J].Engineering Mechanics,35(9):26-36.
Lee Y K, Pietruszczak S,2021.Limit equilibrium analysis incorporating the generalized hoek-brown criterion[J].Rock Mechanics and Rock Engineering,54(9):4407-4418.
Li B, Guo L, Zhang F S,2014.Macro-micro investigation of granular materials in torsional shear test[J].Journal of Central South University,21(7):2950-2961.
Li D Y, Sun Z, Xie T,et al,2017.Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths[J].Engineering Geology,228:270-281.
Li R L, Zhou G Q, Mo P Q,et al,2021.Behaviour of granular matter under gravity-induced stress gradient:A two-dimensional numerical investigation[J].International Journal of Mining Science and Technology,31(3):439-450.
Liu Guolei, Tian Zhaojun, Li Gongjian,et al,2011.Measurement and analysis of ground stress in expansion area in Beizao mine under sea[J].Coal Science and Technology,39(9):26-29.
Liu Y, You Z P, Li L,et al,2013.Review on advances in modeling and simulation of stone-based paving materials[J].Construction and Building Materials,43:408-417.
Meng F F, Pu H, Sasaoka T,et al,2021.Time effect and prediction of broken rock bulking coefficient on the base of particle discrete element method[J].International Journal of Mi-ning Science and Technology,31(4):643-651.
O’Sullivan C,2011.Particle-based discrete element modeling:Geomechanics perspective[J].International Journal of Geo-mechanics,11(6):449-464.
Shi Chong, Zhang Qiang, Wang Shengnian,2018.Numerical Simulation Technology and Application with Particle Flow Code(PFC 5.0)[M].Beijing:China Architecture & Building Press.
Swansson S R, Brown W S,1971.An observation of loading path independence of fracture in rock[J].International Jou-rnal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,8(3):277-281.
Wang Bin, Zhu Jiebing, Wu Aiqing,et al,2008.Experimental study on mechanical properties of Jinping marble under loading and unloading stress paths[J].Chinese Journal of Rock Mechanics and Engineering,27(10):2138-2145.
Wu Yushan, Li Jiding,1984.Unloading properties of marble[J].Rock and Soil Mechanics,5(1):29-36.
Yang Y S, Zhang Bang’an,2022.Deformation failure and gas seepage of raw coal in alternate loading and unloading by stages[J].Geotechnical and Geological Engineering,40(2):751-764.
Zhang J C, Lin Z N, Dong B,et al,2021.Triaxial compression testing at constant and reducing confining pressure for the mechanical characterization of a specific type of sandstone[J].Rock Mechanics and Rock Engineering,54(4):1999-2012.
Zhao Bo, Xu Tao, Yang Shengqi,et al,2021.Experimental and numerical study of fatigue damage of highly stressed rocks under cyclic loading[J].Journal of Central South University(Science and Technology),52(8):2725-2735.
Zhao Guobin, Zhou Jianjun, Wang Sijing,et al,2013.Study of mechanical characteristics of limestone under unloading condition[J].Chinese Journal of Rock Mechanics and Engineering,32(Supp.2):2994-2999.
Zhao H G, Liu C, Huang G,2021.Dilatancy behaviour and permeability evolution of sandstone subjected to initial confining pressures and unloading rates[J].Royal Society Open Science,8(1):201792.
Zhong Zhibin, Deng Ronggui, Li Jia,et al,2014.Experimental study of triaxial mechanical properties of natural fissured rhyolite[J].Chinese Journal of Rock Mechanics and Engineering,33(6):1233-1240.
Zhou Ruiguang, Qu Yongxin, Cheng Binfang,et al,1996.Experimental study on mechanical properties of soft rock in Beizao coal mine,Longkou,Shandong[J].Journal of Engineering Geology,4(4):55-60.
陈旦熹,戴冠一,1982.三向应力状态下大理岩压缩变形试验研究[J].岩土力学,3(1):27-44.
陈岩,2018.采动影响下岩石的变形破坏行为及非线性模型研究[D].北京:中国矿业大学.
高春玉,徐进,何鹏,等,2005.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,24(3):456-460.
胡光辉,徐涛,陈崇枫,等,2018.基于离散元法的脆性岩石细观蠕变失稳研究[J].工程力学,35(9):26-36.
刘国磊,田昭军,李恭建,等,2011.北皂煤矿海域扩采区地应力测量与分析[J].煤炭科学技术,39(9):26-29.
石崇,张强,王盛年,2018.颗粒流(PFC 5.0)数值模拟技术及应用[M].北京:中国建筑工业出版社.
汪斌,朱杰兵,邬爱清,等,2008.锦屏大理岩加、卸载应力路径下力学性质试验研究[J].岩石力学与工程学报,27(10):2138-2145.
吴玉山,李纪鼎,1984.大理岩卸载力学特性的研究[J].岩土力学,5(1):29-36.
赵博,徐涛,杨圣奇,等,2021.循环载荷作用下高应力岩石疲劳损伤破坏数值模拟与试验研究[J].中南大学学报(自然科学版),52(8):2725-2735.
赵国斌,周建军,王思敬,等,2013.卸荷条件下灰岩力学特性研究[J].岩石力学与工程学报,32(增2):2994-2999.
钟志彬,邓荣贵,李佳,等,2014.天然裂隙性流纹岩三轴力学特性试验研究[J].岩石力学与工程学报,33(6):1233-1240.
周瑞光,曲永新,成彬芳,等,1996.山东龙口北皂煤矿软岩力学特性实验研究[J].工程地质学报,(5):55-60.
[1] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[2] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[3] 周可凡,刘科伟,郭腾飞. 基于声发射的倾斜软硬互层岩石破坏特性研究[J]. 黄金科学技术, 2022, 30(6): 923-934.
[4] 李明兼,尹土兵,谭小松,杨政. 基于离散元的花岗岩热敏感性及裂纹扩展研究[J]. 黄金科学技术, 2022, 30(4): 559-573.
[5] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[6] 张栩栩,杨仕教,曾佳君,罗可,蒲成志. 含预制缺陷类岩体模型破断试验与分析[J]. 黄金科学技术, 2020, 28(2): 255-263.
[7] 曾晟,王少平,张妮. 冲击荷载下岩石裂纹扩展研究进展[J]. 黄金科学技术, 2019, 27(1): 52-62.
[8] 李响,怀震,李夕兵,张倬瑶. 基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J]. 黄金科学技术, 2019, 27(1): 41-51.
[9] 周玉斌, 李一帆, 邓飞. 破碎带下采矿引起地表沉陷的离散元数值模拟[J]. J4, 2006, 14(1): 18-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!