黄金科学技术 ›› 2023, Vol. 31 ›› Issue (1): 123-132.doi: 10.11872/j.issn.1005-2518.2023.01.099
Shunling RUAN1,2(),Yankang RUAN1(),Caiwu LU1,2,Qinghua GU1,2
摘要:
为了解决传统的传送带托辊异常检测方法效率低、实时性差等问题,提出一种基于红外图像识别的托辊异常检测模型。通过现场采集并使用标签平滑和Mosaic数据增强处理对托辊红外图像数据集进行扩充,降低模型的训练成本。在特征提取模块提出使用GhostNet骨干特征提取网络,能够有效地降低特征提取所需成本。在特征融合模块,提出使用SPP-Net模块优化PaNet特征融合网络,增加模型的感受野。通过深度可分离卷积块简化模型结构,降低模型的计算量和参数量,并通过LeakyReLU激活函数提高模型的学习能力。试验结果表明:该检测模型能够有效识别托辊异常。在实际检测中,该方法在托辊检测中平均准确率达到94.9%,检测速度达到39.2 FPS,为矿山传送带托辊的准确高效巡检提供了保障。
中图分类号:
Bochkovskiy A, Wang C Y, Liao H Y M,2020.Yolov4:Optimal speed and accuracy of object detection[J].arXiv,2004.10934. | |
Cao Guanqiang,2020.Fault detection method for belt conveyor roller[J].Industry and Mine Automation,46(6):81-86. | |
Guo Qinghua,2018.Research on roller fault identification algorithm of belt conveyor system based on fiber temperature measurement technology[J].Coal Mine Machinery,39(8):157-160. | |
Han K, Wang Y, Tian Q,et al,2020.Ghostnet:More features from cheap operations[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE. | |
Hao Hongtao, Ni Fanfan, Ding Wenjie,2019.Fault diagnosis method of rollers based on sound signals [J].Noise and Vibration Control,39(3):187-192. | |
He K, Zhang X, Ren S,et al,2015.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,37(9):1904-1916. | |
Ioffe S, Szegedy C,2015.Batch normalization:Accelerating deep network training by reducing internal covariate shift[J].arXiv,1502.03167. | |
Lin T Y, Goyal P, Girshick R,et al,2017.Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision(ICCV).Venice:IEEE. | |
Liu Fen,2020.Fault diagnosis of roller of belt conveyor based on big data technology[J].Coal Mine Machinery,41(8):177-179. | |
Liu S, Qi L, Qin H,et al,2018.Path aggregation network for instance segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Salt Lake City:IEEE. | |
Liu W, Anguelov D, Erhan D,et al,2016.Ssd:Single shot multibox detector[C]//European Conference on Computer Vision(ECCV).Amsterdam:IEEE. | |
Ravikumar S, Kanagasabapathy H, Muralidharan V,2019.Fault diagnosis of self-aligning troughing rollers in belt conveyor system using k-star algorithm[J].Measurement,133:341-349. | |
Redmon J, Divvala S, Girshick R,et al,2016.You only look once:Unified,real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE. | |
Ren S, He K, Girshick R,et al,2017.Faster r-cnn:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,39(6):1137-1149. | |
Song Tianxiang, Yang Mingjin, Yang Linshun,et al,2019.Fault diagnosis for roller based on spectral clustering analysis[J].Electronic Measurement Technology,42(5):144-150. | |
Su Hui, Niu Linkai, Zhang Kun,2018.Design of roller fault monitoring system based on ZigBee wireless sensor network[J].Coal Engineering,50(7):14-17. | |
Sun Wei, Diao Dongmei,2016.Roller fault detection of belt convey or based on φ-OTDR technology [J].Industry and Mine Automation,42(8):9-12. | |
Szegedy C, Vanhoucke V, Ioffe S,et al,2016.Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE. | |
Wang C Y, Liao H Y M, Wu Y H,et al,2020.CSPNet:A new backbone that can enhance learning capability of CNN[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE. | |
Xie Miao, Zhu Zhen, Lu Jinnan,2020.Research on detection method of roller jam based on infrared image processing technology[J].Machine Design and Research,36(5):152-157. | |
Yang M, Zhou W, Song T,2020.Audio-based fault diagnosis for belt conveyor rollers[J].Neurocomputing,397:447-456. | |
Yi Xin, Yang Mingjin, Yang Linshun,et al,2020.The KNN and SVM-based 2-level comprehensive health indicators diagnosis method for detecting the failure of belt conveyor’s idlers[J].Coal Preparation Technology,(5):94-102. | |
Zhang X, Wan S, He Y,et al,2021.Teager energy spectral kurtosis of wavelet packet transform and its application in locating the sound source of fault bearing of belt conveyor[J].Measurement,173:108367. | |
Zheng Z, Wang P, Ren D,et al,2021.Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J].Transactions on Cybernetics,52(8):8574-8586. | |
曹贯强,2020.带式输送机托辊故障检测方法[J].工矿自动化,46(6):81-86. | |
郭清华,2018.基于光纤测温技术的带式输送机托辊故障识别算法研究[J].煤矿机械,39(8):157-160. | |
郝洪涛,倪凡凡,丁文捷,2019.基于声音信号的托辊故障诊断方法[J].噪声与振动控制,39(3):187-192. | |
刘芬,2020.基于大数据技术的带式输送机托辊故障诊断[J].煤矿机械,41(8):177-179. | |
宋天祥,杨明锦,杨林顺,等,2019.基于谱聚类分析的托辊故障诊断[J].电子测量技术,42(5):144-150. | |
苏辉,牛蔺楷,张琨,2018.基于ZigBee无线传感网络的托辊卡死故障监测系统设计[J].煤炭工程, 50(7):14-17. | |
孙维,刁冬梅,2016.基于φ-OTDR技术的带式输送机托辊故障检测[J].工矿自动化,42(8):9-12. | |
谢苗,朱振,卢进南,2020.基于红外图像处理技术的托辊卡阻检测方法[J].机械设计与研究,36(5):152-157. | |
伊鑫,杨明锦,杨林顺,等,2020.基于KNN与SVM两级综合健康指标的托辊故障诊断方法[J].选煤技术,(5):94-102. |
[1] | 顾清华, 杜艺凡, 李萍丰, 王丹. 基于加权双向特征融合的矿区道路落石检测[J]. 黄金科学技术, 2023, 31(6): 953-963. |
[2] | 阮顺领,董莉娟,卢才武,顾清华. 基于RCR _YOLOv4的矿井巷道红外障碍检测研究[J]. 黄金科学技术, 2022, 30(4): 603-611. |
|