img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (1): 123-132.doi: 10.11872/j.issn.1005-2518.2023.01.099

• 采选技术与矿山管理 • 上一篇    下一篇

基于红外图像的矿石传送带托辊异常检测

阮顺领1,2(),阮炎康1(),卢才武1,2,顾清华1,2   

  1. 1.西安建筑科技大学资源工程学院,陕西 西安 710055
    2.西安市智慧工业感知计算与决策重点实验室,陕西 西安 710055
  • 收稿日期:2022-08-05 修回日期:2022-11-20 出版日期:2023-02-28 发布日期:2023-03-27
  • 通讯作者: 阮炎康 E-mail:ruanshunling@163.com;2944423851@qq.com
  • 作者简介:阮顺领(1981-),男,河南西华人,副教授,博士,从事矿山智能科学与工程研究工作。ruanshunling@163.com
  • 基金资助:
    国家自然科学基金项目“地下金属矿山岩体破坏多源异质流数据智能融合与态势评估研究”(51974223);陕西省自然科学基金项目“多模态融合学习下尾矿坝安全态势感知与协同预警研究”(2022JM-201)

Detection of Ore Conveyer Roller Based on Infrared Image

Shunling RUAN1,2(),Yankang RUAN1(),Caiwu LU1,2,Qinghua GU1,2   

  1. 1.School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
    2.Xi’an Key Laboratory of Intelligent Industry Perception Computing and Decision Making, Xi’an 710055, Shaanxi, China
  • Received:2022-08-05 Revised:2022-11-20 Online:2023-02-28 Published:2023-03-27
  • Contact: Yankang RUAN E-mail:ruanshunling@163.com;2944423851@qq.com

摘要:

为了解决传统的传送带托辊异常检测方法效率低、实时性差等问题,提出一种基于红外图像识别的托辊异常检测模型。通过现场采集并使用标签平滑和Mosaic数据增强处理对托辊红外图像数据集进行扩充,降低模型的训练成本。在特征提取模块提出使用GhostNet骨干特征提取网络,能够有效地降低特征提取所需成本。在特征融合模块,提出使用SPP-Net模块优化PaNet特征融合网络,增加模型的感受野。通过深度可分离卷积块简化模型结构,降低模型的计算量和参数量,并通过LeakyReLU激活函数提高模型的学习能力。试验结果表明:该检测模型能够有效识别托辊异常。在实际检测中,该方法在托辊检测中平均准确率达到94.9%,检测速度达到39.2 FPS,为矿山传送带托辊的准确高效巡检提供了保障。

关键词: 机器视觉, 红外图像识别, 深度学习网络, 网络结构优化, 托辊检测, 异常检测

Abstract:

With the development of intelligent construction of mine,the detection of mine equipment is becoming more and more intelligent.The ore conveyor belt is one of the important production equipment in the mine,and the abnormal detection of the conveyor roller is one of the important contents of mine safety.At present,most of the ore conveyor roller inspection is manual inspection,and depends on the personal experience of the inspector to judge the working status of the roller,which will lead to problems such as the damage of the roller is not found in time.Therefore,it is urgent to study a more objective,intelligent and efficient method for abnormal detection of rollers.In order to solve the problems of low efficiency and poor real-time performance of the traditional ore conveyor roller anomaly detection method,an optimization model of ore conveyor roller anomaly detection based on infrared image recognition was proposed.The infrared image of the roller was collected on the spot and the infrared image data set of the roller was expanded by using label smoothing and Mosaic data enhancement processing to prevent the overfitting of the detection model and reduce the training cost of the model.In the feature extraction module,it was proposed to use GhostNet backbone feature extraction network,which can effectively reduce the image redundancy produced by feature extraction,accelerate the learning speed of the model,and further optimize the backbone feature extraction network through LeakyReLU activation function to improve the learning ability of the model.In the feature fusion module,multi-dimensional feature fusion was realized through the feature pyramid structure and the bottom-up feature fusion layer,and the SPP-Net module was used to optimize the PaNet feature fusion network to increase the effective receptive field of the model.And through the depth separable convolution block to simplify the model structure,reduce the amount of calculation and the number of parameters of the model.The experimental results show that,compared with the mainstream detection model,the detection model can more effectively identify rollers and distinguish between normal and abnormal rollers.In the actual detection,the detection accuracy of the idlers is 96.2%,the recall rate is 95.9%,and the average detection accuracy is 94.9%,in which the accuracy of abnormal rollers is 99.6%,the accuracy of normal rollers is 90.2%,the detection speed is 39.2 FPS,and the number of model parameters is only 1.1×107.The method provides a guarantee for accurate and efficient inspection of mine conveyor rollers.

Key words: machine vision, infrared image recognition, deep learning network, network structure optimization, roller detection, anomaly detection

中图分类号: 

  • X986

图1

托辊异常检测优化模型网络结构"

图2

基于逐层卷积的Ghost模块"

图3

基于Ghost模块优化的颈部结构"

图4

传统颈部结构与CSPNet结构对比"

图5

基于多尺度的SPP-Net优化模块"

图6

基于深度可分离卷积的卷积块优化模型"

图7

Mosaic数据增强处理流程图"

图8

不同模型损失曲线分析"

表1

不同骨干网络检测结果对比"

骨干网络精准度/%召回率/%MAP/%参数量 /(×107速度 /FPS
CSPDarkNet5390.591.689.43.631.7
MobileNetv191.091.685.91.360.7
MobileNetv293.995.393.61.148.4
MobileNetv394.194.491.81.244.3
GhostNet95.695.393.81.136.4

表2

不同激活函数检测结果对比"

激活函数

精准度

/%

召回率

/%

AP1

/%

AP2

/%

MAP

/%

速度

/FPS

ReLU95.695.397.789.893.836.4
Tanh93.894.198.887.493.137.9
Sigmoid94.794.799.481.290.340.0
RReLU96.996.999.890.094.937.9
LeakyReLU96.295.999.690.294.939.2

表3

不同卷积块对模型性能影响分析"

卷积块种类精准度/%召回率/%

AP1

/%

AP2

/%

MAP

/%

参数量

/(×107

速度

/FPS

普通卷积95.395.399.187.993.54.035.6
深度可分离卷积96.295.999.690.294.31.139.2

表4

SPP-Net结构对模型性能影响分析"

SPP-NET

精准度

/%

召回率

/%

AP1

/%

AP2

/%

MAP

/%

参数量

/(×107

速度

/FPS

93.193.198.783.291.01.140.7
96.296.099.690.294.91.139.2

表5

不同预处理方法对模型性能影响分析"

标签平滑MOSAIC增强精准度/%召回率/%AP1/%AP2/%MAP/%
90.491.397.884.391.1
93.192.397.788.292.9
94.394.099.084.992.0
96.295.999.690.294.9

表6

不同检测模型检测结果对比"

模型

精准度

/%

召回率

/%

AP1

/%

AP2

/%

MAP

/%

参数量

/(×107

速度

/FPS

Faster R-CNN60.887.399.979.784.81428.7
Retomamet86.086.097.070.383.43.728.1
SSD86.986.995.162.278.72.699.8
YOLOV390.490.796.075.085.56.226.2
YOLOV495.095.099.385.092.16.435.3
本文模型96.295.999.690.294.91.139.2

图9

不同模型的托辊检测结果"

Bochkovskiy A, Wang C Y, Liao H Y M,2020.Yolov4:Optimal speed and accuracy of object detection[J].arXiv,2004.10934.
Cao Guanqiang,2020.Fault detection method for belt conveyor roller[J].Industry and Mine Automation,46(6):81-86.
Guo Qinghua,2018.Research on roller fault identification algorithm of belt conveyor system based on fiber temperature measurement technology[J].Coal Mine Machinery,39(8):157-160.
Han K, Wang Y, Tian Q,et al,2020.Ghostnet:More features from cheap operations[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE.
Hao Hongtao, Ni Fanfan, Ding Wenjie,2019.Fault diagnosis method of rollers based on sound signals [J].Noise and Vibration Control,39(3):187-192.
He K, Zhang X, Ren S,et al,2015.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,37(9):1904-1916.
Ioffe S, Szegedy C,2015.Batch normalization:Accelerating deep network training by reducing internal covariate shift[J].arXiv,1502.03167.
Lin T Y, Goyal P, Girshick R,et al,2017.Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision(ICCV).Venice:IEEE.
Liu Fen,2020.Fault diagnosis of roller of belt conveyor based on big data technology[J].Coal Mine Machinery,41(8):177-179.
Liu S, Qi L, Qin H,et al,2018.Path aggregation network for instance segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Salt Lake City:IEEE.
Liu W, Anguelov D, Erhan D,et al,2016.Ssd:Single shot multibox detector[C]//European Conference on Computer Vision(ECCV).Amsterdam:IEEE.
Ravikumar S, Kanagasabapathy H, Muralidharan V,2019.Fault diagnosis of self-aligning troughing rollers in belt conveyor system using k-star algorithm[J].Measurement,133:341-349.
Redmon J, Divvala S, Girshick R,et al,2016.You only look once:Unified,real-time object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE.
Ren S, He K, Girshick R,et al,2017.Faster r-cnn:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,39(6):1137-1149.
Song Tianxiang, Yang Mingjin, Yang Linshun,et al,2019.Fault diagnosis for roller based on spectral clustering analysis[J].Electronic Measurement Technology,42(5):144-150.
Su Hui, Niu Linkai, Zhang Kun,2018.Design of roller fault monitoring system based on ZigBee wireless sensor network[J].Coal Engineering,50(7):14-17.
Sun Wei, Diao Dongmei,2016.Roller fault detection of belt convey or based on φ-OTDR technology [J].Industry and Mine Automation,42(8):9-12.
Szegedy C, Vanhoucke V, Ioffe S,et al,2016.Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE.
Wang C Y, Liao H Y M, Wu Y H,et al,2020.CSPNet:A new backbone that can enhance learning capability of CNN[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE.
Xie Miao, Zhu Zhen, Lu Jinnan,2020.Research on detection method of roller jam based on infrared image processing technology[J].Machine Design and Research,36(5):152-157.
Yang M, Zhou W, Song T,2020.Audio-based fault diagnosis for belt conveyor rollers[J].Neurocomputing,397:447-456.
Yi Xin, Yang Mingjin, Yang Linshun,et al,2020.The KNN and SVM-based 2-level comprehensive health indicators diagnosis method for detecting the failure of belt conveyor’s idlers[J].Coal Preparation Technology,(5):94-102.
Zhang X, Wan S, He Y,et al,2021.Teager energy spectral kurtosis of wavelet packet transform and its application in locating the sound source of fault bearing of belt conveyor[J].Measurement,173:108367.
Zheng Z, Wang P, Ren D,et al,2021.Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J].Transactions on Cybernetics,52(8):8574-8586.
曹贯强,2020.带式输送机托辊故障检测方法[J].工矿自动化,46(6):81-86.
郭清华,2018.基于光纤测温技术的带式输送机托辊故障识别算法研究[J].煤矿机械,39(8):157-160.
郝洪涛,倪凡凡,丁文捷,2019.基于声音信号的托辊故障诊断方法[J].噪声与振动控制,39(3):187-192.
刘芬,2020.基于大数据技术的带式输送机托辊故障诊断[J].煤矿机械,41(8):177-179.
宋天祥,杨明锦,杨林顺,等,2019.基于谱聚类分析的托辊故障诊断[J].电子测量技术,42(5):144-150.
苏辉,牛蔺楷,张琨,2018.基于ZigBee无线传感网络的托辊卡死故障监测系统设计[J].煤炭工程, 50(7):14-17.
孙维,刁冬梅,2016.基于φ-OTDR技术的带式输送机托辊故障检测[J].工矿自动化,42(8):9-12.
谢苗,朱振,卢进南,2020.基于红外图像处理技术的托辊卡阻检测方法[J].机械设计与研究,36(5):152-157.
伊鑫,杨明锦,杨林顺,等,2020.基于KNN与SVM两级综合健康指标的托辊故障诊断方法[J].选煤技术,(5):94-102.
[1] 顾清华, 杜艺凡, 李萍丰, 王丹. 基于加权双向特征融合的矿区道路落石检测[J]. 黄金科学技术, 2023, 31(6): 953-963.
[2] 阮顺领,董莉娟,卢才武,顾清华. 基于RCR _YOLOv4的矿井巷道红外障碍检测研究[J]. 黄金科学技术, 2022, 30(4): 603-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!