img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (3): 359-377.doi: 10.11872/j.issn.1005-2518.2023.03.137

• 矿产勘查与资源评价 •    下一篇

柴达木巴伦马海盆地锂稀有轻金属黏土型矿赋存特征

潘彤1(),陈建洲2,3(),丁成旺2,3,马玉亮2,3,梁辉4,张涛2,3,杜小春2,3   

  1. 1.青海省地质矿产勘查开发局,青海 西宁 810008
    2.青海省第四地质勘查院,青海 西宁 810001
    3.青海省页岩气资源重点实验室,青海 西宁 810001
    4.青海瞻远地质勘探有限责任公司,青海 西宁 810008
  • 收稿日期:2022-10-08 修回日期:2023-01-11 出版日期:2023-06-30 发布日期:2023-07-20
  • 通讯作者: 陈建洲 E-mail:pant66@163.com;qhchjzh@163.com
  • 作者简介:潘彤(1966-),男,青海乐都人,教授级高级工程师,从事区域成矿规律研究工作。pant66@163.com
  • 基金资助:
    青海省“昆仑英才·高端创新创业人才”计划项目、青海省地质矿产勘查开发局高层次人才培养项目“青海省沉积型锂矿成矿研究”(2023-3-18);企业地勘项目“青海省茫崖市巴伦马海稀有轻金属矿地质调查”和“ 青海省茫崖市巴伦马海稀有轻金属矿可利用性研究”联合资助

Occurrence Characteristics of Lithium Rare Light Metal Clay-type Deposits in Balunmahai Basin of Qaidam Basin

Tong PAN1(),Jianzhou CHEN2,3(),Chengwang DING2,3,Yuliang MA2,3,Hui LIANG4,Tao ZHANG2,3,Xiaochun DU2,3   

  1. 1.Qinghai Bureau of Geology and Mineral Exploration and Development, Xining 810008, Qinghai, China
    2.The Fourth Geological Exploration Institute of Qinghai Province, Xining 810001, Qinghai, China
    3.Qinghai Key Laboratory of Shale Gas Resources, Xining 810001, Qinghai, China
    4.Qinghai Zhanyuan Geological Exploration Co. , Ltd. , Xining 810008, Qinghai, China
  • Received:2022-10-08 Revised:2023-01-11 Online:2023-06-30 Published:2023-07-20
  • Contact: Jianzhou CHEN E-mail:pant66@163.com;qhchjzh@163.com

摘要:

为了查明黏土层中稀有金属矿的赋存形式、富集特征和分布范围,了解稀有轻金属矿组分变化特征,评价资源潜力,在柴达木巴伦马海盆地开展了以锂稀有轻金属为主攻矿种的地质调查评价工作。在全新统(Qh)、上更新统(Qp3)和中更新统(Qp2)圈定含矿黏土层3层,估算LiCl潜在资源总量可达114.41万t。选矿试验锂浸取率达到51%~55%。含矿黏土层厚度和Li、Rb、Cs含量变化稳定。锂以铁锰结合态为主,残渣态次之。黏土矿物以伊利石为主,Li、Rb和Cs含量与黏土含量呈正相关关系。本区黏土型锂矿中既有结构型锂,也有吸附型锂,是介于碳酸盐黏土型锂矿与火山岩黏土型锂矿之间的一类黏土型锂矿。首次针对黏土层开展了锂稀有轻金属矿的调查评价工作并发现了黏土型锂稀有轻金属资源,其与液体矿、固体盐矿相生相伴,是盐湖资源的重要组成部分。

关键词: 黏土型锂矿, 赋存特征, 沉积型锂矿, 稀有金属矿床, 资源潜力, 调查评价

Abstract:

In order to identify the occurrence, enrichment, storage conditions and distribution characteristics of rare metal ore in the clay layer,to study the sedimentary characteristics,variation law and metallogenic law of the Qaidam Basin,the evaluation of resource potential were studied in Balunhaima Basin of Qaidam Basin. The investigation and evaluation of lithium rare light metals as the main minerals in Balunmahai salt lake Basin of Qaidam Basin has been carried out, including drilling, sample collection and testing, statistical analysis of data, correlation of rock and ore-bearing clay layers, law summary and research work on the availability of ore-bearing clay. Three layers of ore-bearing clay layers were delineated in the Quaternary Holocene (Qh), Upper Pleistocene (Qp3) and Middle Pleistocene (Qp2). It is estimated that the total potential resources of LiCl can reach 1.1441 million tons, which is converted into the total potential resources of Li2O, Rb2O and Cs2O reaching 403 200 tons, 357 200 tons and 31 300 tons respectively.The lithium leaching rate reaches 51%~55% with 10% sulfuric acid concentration,25% pulp concentration,1 hour leaching time and 25 ℃ leaching temperature.The thickness of ore-bearing clay layer and the contents of Li,Rb and Cs are stable. Lithium is mainly composed of Fe-Mn binding state,followed by residue state,Rb and Cs are mainly composed of residue state.The clay minerals are mainly illite,and the contents of Li,Rb and Cs are positively correlated with the clay content. It is concluded that there are both structural lithium and adsorbed lithium in clay-type lithium deposits in this area,which is a kind of clay-type lithium deposits between carbonate clay-type lithium deposits and volcanic clay-type lithium deposits.This type is a new type in Balunmahai Basin,and the mining area has the conditions for extraction and utilization.In this paper,the investigation and evaluation of rare light metal lithium deposits were carried out for the first time in clay layer,and the clay-type lithium rare light metal resources were found.The orebody is associated with liquid ore and solid salt ore,which is an important part of salt lake resources.The research lays a foundation for the overall planning,development and efficient utilization of the evaluation area of the Balunmahai Basin.

Key words: clay-type lithium ore, occurrence characteristics, sedimentary lithium ore, rare metal deposits, resource potential, investigation and evaluation

中图分类号: 

  • P618.71

图1

柴达木马海盆地地质简图1.全新世沉积;2.上更新世沉积;3.中更新世沉积;4.下更新世沉积;5.干柴沟组;6.油沙山组;7.狮子沟组;8.现代湖水;9.实测地质界线及不整合地质界线;10.背斜轴;11.逆断层;12.推测断层;13.地层产状;14.调查评价区;15.剖面及编号"

图2

巴伦马海盆地地层综合柱状图(修改自马金元等,2010)"

表1

潜在资源估算各含矿黏土层块段指标参数"

黏土层编号样品数/个厚度/m面积/km2体重/(t·m-3湿度/%湿度校正系数
范围平均值范围平均值范围平均值范围平均值范围平均值
N80.51~5.682.590.126~1.9730.9452.06~2.122.0716.39~16.7516.6281.33~83.5483.38
N361.95~20.259.820.201~24.8415.0291.96~2.082.0616.12~19.3716.7282.11~83.8883.28
N100.78~6.003.480.329~4.0531.2452.05~2.102.0616.01~16.4616.3683.54~83.9983.64

图3

巴伦马海盆地评价区发育的不同颜色黏土层(a)灰褐色黏土;(b)灰绿色黏土;(c)黑色含炭黏土;(d)灰褐色+黑色含炭黏土"

图4

巴伦马海盆地评价区发育的不同组分黏土层(a)含石膏黏土;(b)含石盐黏土;(c)含粉砂黏土;(d)黑色含炭黏土"

表2

巴伦马海盆地评价区各类黏土层及含矿黏土层特征统计"

黏土层

分类

控制工程数/个

分布

深度/m

单工程或含矿黏土层厚度/mLiCl含量/(×10-6Rb2O含量/(×10-6Cs2O含量/(×10-6岩石组合、结构构造特征
最小值最大值平均值最小值最大值平均值最小值最大值平均值最小值最大值平均值
褐色黏土870~44.800.7222.3510.2243.09477.01352.2662.73215.40120.085.4019.7410.12岩石组合:灰褐色含石膏黏土、含粉砂黏土、含石盐黏土等
灰绿色黏土640.75~36.100.5410.104.14163.69447.09324.7348.23138.8891.284.2213.268.92岩石组合:灰绿色含石膏黏土、含粉砂黏土、含石盐黏土等

黑色含炭

黏土

380.45~42.100.5110.954.06160.63461.99345.4440.14134.5894.064.0413.268.84岩石组合:含石盐含炭黏土、含粉砂含炭黏土、含石膏含炭黏土、黑色含炭黏土等
含粉砂黏土673.40~40.300.8217.686.38228.51477.01331.5466.40154.20117.823.4215.2610.4岩石组合:灰褐、灰绿色含粉砂黏土、含炭含粉砂黏土、粉砂—黏土等
含石膏黏土702.10~35.100.7620.927.69245.72455.02356.4853.70155.56106.184.5613.289.09岩石组合:含石膏黏土、含粉砂石膏黏土、含石膏石盐黏土、含石膏含炭黏土等
含石盐黏土440~38.100.7022.804.56149.64517.02333.0644.40219.11103.073.5418.138.37岩石组合:灰褐、灰绿色含石盐黏土、含石膏石盐黏土、含粉砂石盐黏土等

N含矿

黏土层

13-0.5111.0512.55298.05422.16351.464.36140.68106.925.1113.268.84岩石组合:灰褐、灰绿色含石盐石膏黏土、灰黑色含炭黏土、棕褐色含石膏黏土、黑色含粉砂含炭黏土等;结构构造:不含夹石,结构简单,属于中厚含矿黏土层,大部分可采,多为粉砂泥质结构,松散

N含矿

黏土层

87-0.8230.4014.11204.78624.85346.9461.90151.06107.555.0113.269.32岩石组合:灰褐—灰绿—灰黑色含石膏黏土、灰褐—灰绿—灰黑色含石盐黏土、灰褐—灰绿色含粉砂黏土、含石膏—含石盐—含粉砂黑色含炭黏土;结构构造:全区可采,含矿黏土层较为稳定,厚度较大,属于中厚含矿黏土层,含夹石多为1层,局部3~5层,结构为简单—较简单含矿黏土层,多为粉砂泥质结构、泥质结构,松散

N含矿

黏土层

14-0.608.002.9238.20478.80348.3472.90153.10111.85.4913.019.32岩石组合:灰褐色含粉砂黏土、灰褐色含石膏石盐黏土、灰褐色含石膏粉砂黏土、灰绿色含石膏粉砂黏土;结构构造:大部分可采,不含夹石,结构简单,多为粉砂泥质结构,松散

图5

NⅣ含矿黏土层特征参数等值线图(a)NⅣ含矿黏土层分布及厚度等值线图;(b)NⅣ含矿黏土层LiCl含量等值线图"

图6

NⅢ含矿黏土层特征参数等值线图(a)NⅢ含矿黏土层分布及厚度等值线图;(b)NⅢ含矿黏土层LiCl含量等值线图"

图7

含矿黏土层与石盐层厚度对比图(a)含矿黏土层厚度等值线图;(b)石盐层厚度等值线图"

图8

南北卤渠中各层位垂向厚度变化特征1.黑色含炭黏土;2.灰绿色黏土;3.深褐色黏土;4.灰褐色含粉砂石盐;5.浅黄色含石盐粉砂"

图9

卤渠中D6点处黏土层位影像"

图10

巴伦马海盆地评价区B-B′剖面示意图1.钻孔位置及编号;2.地层时代代号;3.含矿黏土层编号"

图11

巴伦马海盆地评价区80线纵剖面示意图1.钻孔位置及编号;2.地层时代代号;3.含矿黏土层编号"

图12

巴伦马海盆地评价区稀有轻金属元素含量变化图"

表3

稀有金属元素在不同介质内的含量变化特征"

类别含量指标LiRbCsLi2ORb2OCs2O
全区最大值93.80174.0017.60201.90190.2918.66
最小值2.934.280.306.314.680.32
平均值49.8489.717.61107.2898.118.07
粉砂层最大值71.80118.007.90154.55129.058.38
最小值12.4030.601.3026.6933.471.38
平均值31.7775.253.5168.3882.303.72
石盐层最大值46.3098.803.5099.66108.053.71
最小值2.934.280.306.314.680.32
平均值18.4438.511.5239.6942.121.62
全区黏土层最大值92.50174.0016.30199.11190.2917.28
最小值19.3022.401.0041.5424.501.06
平均值56.3599.188.92121.29108.479.46
灰褐色黏土最大值92.20174.0017.60198.46190.2918.66
最小值24.5040.601.0052.7444.401.06
平均值57.58107.099.28123.94117.129.84
灰绿色黏土最大值86.50142.0014.20186.19155.3015.05
最小值21.3025.002.6445.8527.342.80
平均值53.1283.098.36114.3490.878.86
黑色含炭黏土最大值92.50143.0014.20199.11156.3915.05
最小值19.3022.401.8741.5424.501.98
平均值54.8485.678.31118.0493.698.81
含粉砂黏土最大值84.90174.0016.30182.75190.2917.28
最小值26.8042.803.8757.6946.814.10
平均值54.75107.289.79117.85117.3310.38
含石膏黏土最大值93.80164.0015.80201.90179.3616.75
最小值21.3039.202.6045.8542.872.76
平均值57.8897.028.55124.59106.109.06
含石盐黏土最大值91.80162.0014.20197.60177.1715.05
最小值23.9025.002.6451.4427.342.80
平均值56.2693.637.86121.10102.408.33

表4

含矿黏土样品矿物含量"

矿物名称灰褐色黏土+灰绿色黏土+黑色含炭黏土黑色含炭黏土灰褐色黏土+灰绿色黏土
石膏19.119.64.9
石盐18.014.919.5
石英20.020.320.8
文石3.205.0
斜长石5.65.78.3
菱铁矿000
光卤石4.63.47.4
白云石2.43.63.2
方解石3.63.25.6
黄铁矿1.20.21.7
黏土矿物22.329.223.6

图13

6号样黏土矿物X射线衍射分析图谱"

表5

黏土矿物相对含量"

样品编号黏土矿物相对含量
伊蒙混层伊利石高岭石绿泥石
6号样1660915
7号样2160712
8号样1464814

表6

7号样综合样品的中稀有金属元素的化学物相分析结果"

化学物相态LiRbCs

含量

/(×10-6

分配率

/%

含量

/(×10-6

分配率

/%

含量

/(×10-6

分配率

/%

总量111.12100.0051.17100.004.27100.00
离子结合态5.695.120.571.120.000.00
碳酸盐结合态5.725.150.761.480.000.00
铁锰结合态75.9168.315.3510.460.286.62
有机结合态4.233.812.675.210.9622.60
残渣态19.5717.6141.8281.733.0270.79

表7

样品元素相关关系矩阵"

LiBeNaMgAlSiSKCaMnFeCoNiCuZnRbCs
Li1
Be0.15161
Na0.11570.01591
Mg0.75130.12490.16111
Al0.79390.15980.14740.73261
Si0.77230.16410.16220.70360.89751
S0.49460.09920.25040.47790.58990.58601
K0.79500.16350.22090.71390.88930.86780.52131
Ca-0.4988-0.1011-0.2709-0.4829-0.5851-0.5807-0.9398-0.53591
Mn0.45170.07350.09550.49880.40940.41240.29290.40560.29751
Fe0.55650.083330.08340.77330.48500.45930.34000.43990.36200.45421
Co0.33480.05640.05740.30820.279230.28400.18210.28270.18380.21330.27271
Ni0.40820.076780.03130.40650.35800.343810.23080.34290.21940.21280.34260.18051
Cu0.24610.04687-0.00230.24570.21180.20730.12740.21460.15450.14860.25280.12100.13231
Zn0.18730.01353-0.07410.319820.12390.1077-0.00910.10310.03730.17520.37740.09930.13720.08091
Rb0.58450.12490.10700.48020.63400.62050.40610.65850.40320.29790.29330.22420.28450.16100.05111
Cs0.74280.14140.10540.57450.70280.70710.44030.74090.43240.36070.37600.32690.35490.22420.10330.59021

图14

Li-Si-Al-K元素线扫描含量变化图解(a)Li-Si元素线扫描含量变化图;(b)Li-Al元素线扫描含量变化图;(c)Li-K元素线扫描含量变化图"

表8

原矿粒度筛析结果"

样品类型粒级/mm产品产率/%品位/(×10-6回收率/%
LiRbCsLiRbCs
混合样品-1.000+0.33557.0571.4963.355.8657.9554.0153.74
-0.335+0.20013.7873.5769.116.8914.4114.2315.27
-0.200+0.1257.7286.2569.946.719.468.068.33
-0.125+0.1004.1560.3866.736.193.564.144.13
-0.100+0.0743.8060.7470.766.223.284.023.80
-0.074+0.0386.1052.6374.316.274.566.786.15
-0.0387.4164.4579.187.216.788.768.59
原矿100.0070.3766.926.22100.00100.00100.00
黑色含炭黏土-1.000+0.33560.9668.1561.075.9659.9957.5957.74
-0.335+0.20014.1963.3266.916.4112.9714.6914.45
-0.200+0.1256.78103.6272.947.6910.157.658.29
-0.125+0.1003.7467.4565.386.293.643.783.74
-0.100+0.0743.4766.9567.086.443.353.603.55
-0.074+0.0385.1763.5768.966.584.755.525.41
-0.0385.6862.6781.527.565.147.176.83
原矿100.0069.2564.646.29100.00100.00100.00

表9

柴达木盆地盐湖类矿床类型对比"

分类特征

成矿

作用

成矿

地质体

矿体形状及规模矿石结构构造(水化学类型)矿石矿物有用组分的赋存形式
第四纪现代盐湖矿床蒸发沉积作用盐湖卤水、盐岩

形状:盐湖盆地控制液相,固

体呈似层状、透镜状;规模:

大型、超大型

固液相共存,以液相为主。

固相呈自形、半自形结构,

粒状、块状、层状构造

KCl、NaCl、MgCl2、MgSO4等,钾石盐、光卤石、石盐、芒硝

晶间卤水、孔隙卤水;

盐类矿物

砂砾孔隙卤水矿床化学沉积作用承压卤水

形状:由含水层控制;

规模:小型、中型、大型

液相KCl、NaCl、MgCl2、MgSO4

晶间卤水、孔隙卤水、

裂隙水

古近纪—新近纪盐类矿床化学沉积作用盐岩

形状:似层状、层状、透镜状;

规模:小型、中型、大型、超大型

固相,自形、半自形结构,粒

状、块状、层状构造

天青石、菱锶矿、石膏、石盐盐类矿物
黏土型矿床沉积吸附作用黏土层

形状:似层状、层状;

规模:大型、超大型

固相,粉砂泥质结构、泥质

结构,松散

含Li、Rb、Cs、Sr、B的伊利石、绿泥石、高岭石、伊蒙混层

吸附于黏土矿物中或

赋存于矿物晶格中,与

黏土矿物含量呈正比

Andreas B, Bruce D V,2014.Geochemistry at the Earth’s Surface[M].Washington:Library of Congress.
Anouk M B, Martin P S, Adrian A F,et al,2020.Adsorption of rare earth elements in regolith-hosted clay deposits[J].Nature Communications,11:4386.
Cui Yi, Wen Hanjie, Yu Wenxiu,et al,2022.Study on the occurrence state and enrichment mechanism of lithium in lithium-rich clay rock series of the Daoshitou Formation of Lower Permian in Central Yunnan[J].Acta Petrologica Sinica,38(7):2080-2094.
Han Guang, Fan Qishun, Liu Jiubo,et al,2021.Origin and hydrochemistry of deep brines from anticlinal reservoir in the western-central Qaidam Basin[J].Journal of Sait Lake Research,29(4):1-11.
Han Guang, Hu Yan, Liu Jiubo,et al,2022.Research report of metallogenic system in Qaidam Basin [R].Golmud :Qinghai Qaidam Comprehensive Geological and Mineral Exploration Institute.
Hindshawa R S, Toscab R, Thomas L,et al,2019.Experimental constraints on Li isotope fractionation during clay formation[J].Geochimica et Cosmochimica Acta,250(1):219-237.
Li Hongpu, Hou Xianhua, Zheng Mianping,et al,2022a.Discussion on metallogenic model and prospecting direction of Pleistocene gravel brine potassium deposit in western Qaidam Basin[J].Journal of Lake Sciences,34(3):1043-1054.
Li Hongpu, Pan Tong, Li Yongshou,et al,2022b.Geochemical composition and origin tracing of structural fissure and pore brine in western Qaidam Basin[J].Earth Science,47(1):36-44.
Li Hongpu, Zheng Mianping,2014a.Metallogenic characteristics of deep brine potassium salt deposit in western Qaidam Basin[J].Mineral Deposits Geology,(Supp.l):935-936.
Li Hongpu, Zheng Mianping, Hou Xianhua,et al,2022.Hydrochemistry characteristics and origin of new brine sandy gravelin early Pleistocene of Heibei concave in Qaidam Basin[J].Earth Science,39(10):1433-1442.
Li Hongpu, Zheng Mianping, Hou Xianhua,et al,2015.Control factors and water chemical characteristics of potassium-rich deep brine in Nanyishan structure of western Qaidam Basin[J].Acta Geoscientica Sinica,36(1):41-50.
Li Wenxia, Miao Weiliang, Zhang Xiying,et al,2022.Distribution characteristics of lithium in surface sediments of Nalinggele River,Qaidam Basin[J].Journal of Sait Lake Research,30(2):86-98.
Liu Lijun, Wang Denghong, Liu Xifang,et al,2017.The main types,distribution features and present situation of exploration and development for domestic and foreign lithium mine[J].Geology in China,44(2):263-278.
Liu Xixi, Yue Xin, Yuan Wenhu,et al,2019.Hydrochemical characteristics and evolutionary process of deep brines from Shizigou anticline structure in Qaidam Basin,China[J].Journal of Salt Lake Research,27(1):73-81.
Lu Jun, Pan Tong, Li Yongshou,et al,2021.A preliminary investigation of hydrochemical characteristics and genesis of deep brine in the central Qaidam Basin[J].Acta Geologica Sinica,95(7):2129-2137.
Ma Jinyuan, Hu Shengzhong, Tian Xiangdong,2010.Sedimentary environment and exploitation of Maihai potash deposits in Qaidam Basin[J].Journal of Salt Lake Research,18(3):9-17.
Ma Shengchao, Wang Denghong, Sun Yan,et al,2019.Geochronology and geochemical characteristics of Lower-Middle Triassic clay rock and their significances for prospecting clay-type lithium deposit[J].Earth Science,44(2):427-440.
Ministry of Natural Resources of the People’s Republic of China, 2020. Specifications for Mineral Geology Salt Part 2: Modern Salt Lake Salt: [S]. Beijing: Ministry of Natural Resources of the People’s Republic of China.
Pan Tong, Li Shanping, Wang Tao,et al,2022.Metallogenic characteristics and prospecting potential of lithium deposits in the Qinghai Province[J].Acta Geologica Sinica,96(5):1827-1854.
Vigier N A, Decarreau A B, Millot R C,et al,2008.Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle[J].Geochimica et Cosmochimica Acta,72:780-792.
Wen Hanjie, Luo Chongguang, Du Shengjiang,et al,2020.Carbonate-hosted clay-type lithium deposit and its prospecting significance[J].Chinese Science Bulletin,65:53-59.
Williams L B, Hervig R L,2005.Lithium and boron isotopes in illite-smectite:The importance of crystal size[J].Geochimica et Cosmochimica Acta,69(24):5705-5716.
Xu Chang,1985.Preliminary study on clay minerals in the sediments of Qinghai-Tibet Salt Lake[J].Chinese Journal of Geology,(1):87-96.
Yue Xin, Liu Xixi, Qiu Xindi,et al,2021.Hydrochemical characteristics and genesis of deep pore brine in Gas Hure area,western Qaidam Basin[J].Journal of Salt Lake Research,29(1):69-79.
Yue Xin, Liu Xixi, Lu Liang,et al,2019.Hydrochemical characteristics and origin of deep pore brine deposits in Mahai Basin[J].Acta Sedimentologica Sinica,37(3):532-540.
Zeng Xu, Lin Tong, Zhou Fei,et al,2021.Carbon and oxygen isotope characteristics of carbonate and Neogene depositional environment in the Yiliping area of Qaidam Basin[J].Natural Gas Geoscience,32(1):73-85.
Zhao Yuanyi, Fu Jiajun, Li Yun,2015.Super large lithium and Boron deposit in Jadar Basin,Serbi[J].Geological Review,61(1):34-44.
崔燚,温汉捷,于文修,等,2022.滇中下二叠统倒石头组富锂黏土岩系锂的赋存状态及富集机制研究[J].岩石学报,38(7):2080-2094.
韩光,樊启顺,刘久波,等,2021.柴达木盆地中西部背斜构造深层卤水水化学特征与成因[J].盐湖研究,29(4):1-11.
韩光,胡燕,刘九波,等,2022.柴达木盆地成矿系统研究报告[R].格尔木:青海省柴达木综合地质矿产勘查院.
李洪普,侯献华,郑绵平,等,2022a.柴达木盆地西部更新统砂砾型深层卤水钾矿成矿模式与找矿方向探讨[J].湖泊科学,34(3):1043-1054.
李洪普,潘彤,李永寿,等,2022b.柴达木盆地西部构造裂隙孔隙卤水地球化学组成及来源示踪[J].地球科学,47(1):36-44.
李洪普,郑绵平,2014a.柴达木盆地西部深层卤水钾盐矿成矿地质特征[J].矿床地质,(增l):935-936.
李洪普,郑绵平,侯献华,等,2014b.柴达木黑北凹地早更新世新型砂砾层卤水水化学特征与成因[J].地球科学,39(10):1433-1442.
李洪普,郑绵平,侯献华,等,2015.柴达木西部南翼山构造富钾深层卤水矿的控制因素及水化学特征[J].地球学报,36(1):41-50.
李雯霞,苗卫良,张西营,等,2022.柴达木盆地那棱格勒河流域表层沉积物中锂的分布特征[J].盐湖研究,30(2):86-98.
刘丽君,王登红,刘喜方,等,2017.国内外锂矿主要类型、分布特点及勘查开发现状[J].中国地质,44(2):263-278.
刘溪溪,岳鑫,袁文虎,等,2019.柴达木盆地西部狮子沟背斜构造区深部卤水水化学特征及演化分析[J].盐湖研究,27(1):73-81.
卢鋆,潘彤,李永寿,等,2021.柴达木盆地中部一里坪—西台吉乃尔地区深层卤水水化学特征及成因初探[J].地质学报,95(7):2129-2137.
马金元,胡生忠,田向东,2010.柴达木盆地马海钾盐矿床沉积环境与开发[J].盐湖研究,18(3):9-17.
马圣钞,王登红,孙艳,等,2019.我国西南部 T1/T2 黏土岩地质年代学、地球化学特征及其对黏土型锂矿的找矿意义[J].地球科学,44(2):427-440.
潘彤,李善平,王涛,等,2022.青海锂矿成矿特征及找矿潜力[J].地质学报,96(5):1827-1854.
温汉捷,罗重光,杜胜江,等,2020.碳酸盐黏土型锂资源的发现及意义[J].科学通报,65(1):53-59.
徐昶,1985.青藏盐湖沉积物中黏土矿物的初步研究[J].地质科学,(1):87-96.
岳鑫,刘溪溪,仇新迪,等,2021.柴西尕斯库勒地区深部孔隙卤水水化学特征及成因分析[J].盐湖研究,29(1):69-79.
岳鑫,刘溪溪,路亮,等,2019.马海盆地深部孔隙卤水水化学特征及成因[J].沉积学报,37(3):532-540.
曾旭,林潼,周飞,等,2021.柴达木盆地一里坪地区新近系沉积环境及碳酸盐岩碳氧同位素特征[J].天然气地球科学,32(1):73-85.
赵元艺,符家骏,李运,2015.塞尔维亚贾达尔盆地超大型锂硼矿床[J].地质论评,61(1):34-44.
中华人民共和国自然资源部,2020. 矿产地质规范 盐类 第2部分:现代盐湖盐类: [S].北京:中华人民共和国自然资源部.
[1] 王建国,张世珍,邢佳,王志男,魏生云,胡建. 乌兰茶卡北山含矿伟晶岩地球化学特征及地质意义[J]. 黄金科学技术, 2022, 30(6): 809-821.
[2] 孙百川,杨瑞东,郑禄林,陈军,任海利,高军波,程伟. 黔西南地区金矿尾矿(渣)潜在资源评价及处理建议[J]. 黄金科学技术, 2022, 30(3): 470-482.
[3] 段留安, 魏有峰, 陈雄军, 韩小梦, 郭云成. 山东胶莱盆地东北缘前垂柳矿区金矿资源潜力分析[J]. 黄金科学技术, 2020, 28(5): 701-711.
[4] 黄鑫,宋倩,王勇军,沈立军,朱裕振,孙超. 山东栖霞—大柳行地区金矿资源潜力评价[J]. 黄金科学技术, 2020, 28(1): 21-31.
[5] 王记周,燕洲泉,徐磊,李侃,李元茂,郑耀文,王怀涛,王玉玺. 新疆大红柳滩地区伟晶岩型锂铍资源潜力分析[J]. 黄金科学技术, 2019, 27(6): 802-815.
[6] 宋英昕,宋明春,丁正江,魏绪峰,徐韶辉,李杰,谭现峰,李世勇,张照录, 焦秀美,胡弘,曹佳. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3): 4-18.
[7] 韩先菊,卿敏,牛翠祎,唐明国. 青海北巴彦喀拉成矿带基于GIS金矿资源综合信息预测评价[J]. 黄金科学技术, 2015, 23(6): 1-9.
[8] 王军平. 内蒙古龙头山金矿床地质特征及成矿规律浅析[J]. 黄金科学技术, 2012, 20(6): 1-6.
[9] 王书春,王瑞腾,孙树提. 内蒙古柴胡栏子金矿床矿体赋存特征及深部预测[J]. J4, 2012, 20(4): 109-112.
[10] 姜维明,齐婓,孟伟,许建波,刘秋杰,吕军恩,原少波,孙健. 山东玲珑矿田东风矿区成矿规律及远景预测[J]. J4, 2012, 20(4): 21-25.
[11] 柳志进,张维昕. 莱西市山后金矿成矿地质条件及资源潜力分析[J]. J4, 2008, 16(2): 18-23.
[12] 耿书杰, 张文钊, 吕兵团. 胶东大磨曲家金矿302号脉下盘次级断裂构造资源潜力分析[J]. J4, 2006, 14(6): 29-35.
[13] 王义文,董诗昌. 辽宁省金矿资源潜力及对勘查工作的几点建议[J]. J4, 1993, 1(3): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!