img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (3): 487-496.doi: 10.11872/j.issn.1005-2518.2023.03.153

• 采选技术与矿山管理 • 上一篇    下一篇

基于综合权重—模糊物元法的岩溶地区隧道围岩质量评价

张卫中(),袁威,康钦容(),夏缘帝,李梦玲   

  1. 武汉工程大学资源与安全工程学院,湖北 武汉 430073
  • 收稿日期:2022-10-21 修回日期:2023-02-14 出版日期:2023-06-30 发布日期:2023-07-20
  • 通讯作者: 康钦容 E-mail:wzzhang1120@126.com;kang801118@163.com
  • 作者简介:张卫中(1977-),男,河南驻马店人,博士后,教授,从事岩石力学相关科研及设计工作。wzzhang1120@126.com
  • 基金资助:
    国家自然科学基金项目“中低品位磷矿山固废胶结体宏细观损伤特性及充填空区力学效应研究”(52174086);国家自然科学基金项目“顺层坡含碎石滑带土变形及渗流特性研究”(51804222);武汉工程大学研究生教育创新基金(CX2019107)

Quality Evaluation of Tunnel Surrounding Rock in Karst Area Based on Comprehensive Weight-Fuzzy Matter-element Method

Weizhong ZHANG(),Wei YUAN,Qinrong KANG(),Yuandi XIA,Mengling LI   

  1. School of Resources and Safety Engineering,Wuhan Institude of Technology,Wuhan 430073,Hubei,China
  • Received:2022-10-21 Revised:2023-02-14 Online:2023-06-30 Published:2023-07-20
  • Contact: Qinrong KANG E-mail:wzzhang1120@126.com;kang801118@163.com

摘要:

为科学、准确地对岩溶隧道进行围岩质量分级评价,提出了基于综合权重—模糊物元法的岩溶地区隧道围岩质量评价方法。根据实测数据,采用CRITIC法确定影响岩溶地区隧道围岩质量指标的客观权重,采用改进的层次分析法确定其主观权重,并利用组合赋权计算得出各项指标的综合权重,最终根据模糊物元理论确定围岩的分级。为验证该方法的有效性,将其应用于岩溶地区腾讯七星数据中心隧道群围岩质量评价中。研究结果表明:基于综合权重—模糊物元法的岩溶地区隧道围岩质量评价判定结果与实际现场分级情况吻合较好,说明该方法能够实现对岩溶隧道围岩质量的综合判定。

关键词: 岩溶区隧道, 围岩质量评价, 综合权重, 模糊物元法

Abstract:

The distribution area of karst in China can reach about 33% of the country’s land area,therefore,in the process of tunnel excavation and construction in karst area,it is inevitable to cross the karst development location.At the same time,due to the hidden nature and irregularity of karst development,water and mud surges may occur locally in tunnel excavation,which greatly reduces the safety and stability of the tunnel and easily causes collapse accidents and threatens construction safety.To solve this problem,the geological situation of the surrounding rock needs to be fully grasped.Therefore,the evaluation of the quality of the surrounding rock is of great significance to the safety of tunnel rock design and construction.In order to scientifically and accurately evaluate the surrounding rock quality of karst tunnels,CRITIC method was used to determine the objective weight of the surrounding rock quality index affecting the tunnel in karst areas according to the measured data.The improved analytic hierarchy process was used to determine the subjective weight,and the combined weight was used to calculate the comprehensive weight of each index.Finally,the classification of surrounding rock was determined according to the fuzzy matter-element theory.Thus,the evaluation method of surrounding rock quality of tunnel in karst areas based on the comprehensive weight-fuzzy matter-element method was proposed,and this method was applied to the evaluation of surrounding rock quality of tunnel group in the seven-star data center of Tencent in karst areas.The research results show that the comprehensive fuzzy evaluation model established by introducing variance coefficients to the CRITIC method and introducing optimal transfer matrix optimization AHP method can avoid the influence of purely human subjective factors and evaluate and grade the rock quality more objectively and comprehensively.The evaluation results are in good agreement with the actual on-site grading,and the method can achieve a more scientific and accurate comprehensive determination of karst tunnel quality.The rock quality of the tunnel in this project example is mainly Ⅳ and Ⅴ surrounding rocks,which are poor and less stable,and the support of the surrounding rocks need to strengthen.

Key words: tunnel in karst area, quality evaluation of surrounding rock, comprehensive weight, fuzzy matter-element method

中图分类号: 

  • TD853

图1

改进的CRITIC法计算步骤"

图2

组合赋权法计算步骤"

图3

模糊物元评价方法示意图"

图4

隧道整体平面布置图"

图5

KBQ指标计算方法"

表1

围岩分级评价指标分类标准"

一级指标二级指标指标编号稳定性等级
围岩岩体结构特征结构类型X1

整体结构

(0.9~1.0)

整体块状

(0.7~0.9)

层状

(0.5~0.7)

破碎状

(0.3~0.5)

散体状

(~0.3)

岩体RQD/%X290~10075~9050~7525~50<25

岩体单轴抗压强度

/MPa

X3200~300100~20050~10025~500~15
岩体完整性系数X40.75~1.000.55~0.750.30~0.550.15~0.300.00~0.15
节理间距/mX50.8~2.00.3~0.80.2~0.30.1~0.20.00~0.1
围岩地质特征地下水/(L·min-1X6<2525~5050~100100~125125~200
软弱夹层性质X7

无夹层

(0.9~1.0)

软岩、岩块

(0.7~0.9)

岩屑

(0.5~0.7)

岩屑夹泥

(0.3~0.5)

泥夹岩屑、泥质

(~0.3)

岩层倾角/(°)X8<1010~1525~4545~6060~90
KBQX9>550550~451450~351350~211≤210

表2

岩体质量评价样本数据"

工程编号断面位置断面编号指标平均取值
X1X2X3X4X5X6X7X8X9
A1进口S10.252.314.00.420.351020.26232.7
B1进口S20.442.418.40.360.221000.215229.6
出口S30.25242.60.410.181000.315312.6
B2进口S40.245.719.90.380.021050.410156.8
出口S50.255.622.40.430.051080.28173.5
B3进口S60.465.542.90.490.26980.412336.1
出口S70.568.847.40.510.30950.214348.9
B4进口S80.252.334.20.420.101010.212209.4
出口S90.449.030.60.390.141060.415198.3
B5进口S100.242.414.50.360.08960.211166.3
出口S110.442.418.20.350.04940.315167.1
B6起点S120.449.020.40.390.34990.414245.0
终点S130.452.025.60.410.301020.112265.3
油库起点S140.452.021.40.410.29970.413249.0
终点S150.265.514.50.480.241000.310248.9

表3

各评价指标的客观权重"

指标编号权重指标编号权重
X10.141X60.025
X20.055X70.175
X30.148X80.105
X40.040X90.079
X50.232

表4

各评价指标的主观权重"

指标编号权重ω指标编号权重ω
X10.230X60.076
X20.049X70.148
X30.061X80.095
X40.185X90.118
X50.039

表5

综合权重计算结果"

指标编号因素主观权重客观权重αβ综合权重
X1结构类型0.2300.1410.5940.4060.194
X2岩体RQD0.0490.0550.051
X3岩体单轴抗压强度0.0610.1480.096
X4岩体完整性系数0.1850.0400.126
X5节理间距0.0390.2320.117
X6地下水0.0760.0250.055
X7软弱夹层性质0.1480.1750.159
X8岩层倾角0.0950.1050.099
X方正汇总行9KBQ0.1180.0790.102

表6

隧道围岩分级结果"

工程编号(名称)断面位置断面编号围岩贴进度围岩评价等级

实测

等级

A1进口S10.296
B1进口S20.315
出口S30.321
B2进口S40.285

出口S50.269
B3进口S60.404
出口S70.395
B4进口S80.282
出口S90.313
B5进口S100.256
出口S110.308
B6起点S120.369
终点S130.320
油库起点S140.370
终点S150.318
Aydan Ö, Ulusay R, Tokashiki N,et al,2014.A new rock mass quality rating system:Rock mass quality rating (RMQR) and its application to the estimation of geomechanical characteristics of rock masses[J].Rock Mechanics and Rock Engineering,47(4):1255-1276.
Cai Wen, Guo Kaizhong, Xu Chulong,et al,1986.Matter element analysis on the investment for the environmental protection project of Guangdong Province[J].Journal of Guangdong Institute of Technology,(2):15-31.
Diakoulaki D, Mavrotas G, Papayannakis L,et al,1995.Determining objective weights in multiple criteria problems:The CRITIC method[J].Computers and Operations Research,22(7):763-770.
Guo S F, Qi S W, Saroglou C,et al,2020.A-BQ a classification system for anisotropic rock mass based on China National Standard[J].Journal of Central South University,27(10):3090-3102.
He P, Wang G, Sun S Q,et al,2020.Reliable stability analysis of surrounding rock for super section tunnel based on digital characteristics of joint information[J].Geomatics,Natural Hazards and Risk,11(1):1528-1541.
Jiang Jie, Pu Ou, Xiaodu Ou,et al,2018.Expert system of surrounding rock classification for highway tunnel in karst region:Design and application[J].Journal of Yangtze River Scientific Research Institute,35(7):94-99.
Li F W, Phoon K K, Du X L,et al,2013.Improved AHP method and its application in risk identification[J].Journal of Construction Engineering and Management,139(3):312-320.
Li Qingbo, Du Pengzhao,2020.Automatic RQD analysis method based on information recognition of borehole images[J].Chinese Journal of Geotechnical Engineering,42(11):2153-2160.
Liu Feiyue, Liu Yihan, Yang Tianhong,et al,2021.Meticulous evaluation of rock mass quality in mine engineering based on machine learning of core photos[J].Chinese Journal of Geotechnical Engineering,43(5):968-974.
Ma Shiwei, Li Shouding, Li Xiao,et al,2020.KNN method for intelligent observational classification of rock mass quality in tunnel[J].Journal of Engineering Geology,28(6):1415-1424.
Mu Chenglin, Huang Runqiu, Pei Xiangjun,et al,2016.Evaluation of rock stability based on combined weighting-unascertained measurement theory[J].Chinese Journal of Geotechnical Engineering,38(6):1057-1063.
Niu Wenlin, Li Tianbin,2015. Optimization of BQ method used in rock mass quality evaluation of rockburst tunnel[J].Journal of Chengdu University of Technology(Natural Science Edition),42(6):658-664.
Wang J C, Guo J,2019.Research on rock mass quality classification based on an improved rough set-cloud model[J].IEEE Access,(7):123710-123724.
Wang Jiaquan, Bai Lei, Lin Zhinan,et al,2020.Analysis of bearing failure characteristics of reinforced soil foundation in karst area[J].Journal of Natural Disasters,29(5):173-181.
Wang Shaoyong, Wu Aixiang, Han Bin,et al,2014.Fuzzy matter-element evaluation of ore-rock cavability in block caving method[J].Chinese Journal of Rock Mechanics and Engineering,33(6):1241-1247.
Wang Wenwen,2019.Research on Regional Ecological Security Evaluation Based on Improved CRITIC-Cloud Model[D].Huainan:Anhui University of Science and Technology.
Wang Xinyi, Yao Mengjie, Zhang Jianguo,et al,2019.Evaluation of water bursting in coal seam floor based on improved AHP and fuzzy variable set theory[J].Journal of Mining and Safety Engineering,36(3):558-565.
Wu Xianguo, Wang Hongtao, He Yun,et al,2018.Excavation stability evaluation of karst tunnel based on fuzzy matter-element[J].China Safety Science Journal,28(1):99-104.
Yin Xin, Liu Quansheng, Wang Xinyu,et al,2020.Prediction model of rockburst intensity classification based on combined weighting and attribute interval recognition theory[J].Journal of China Coal Society,45(11):3772-3780.
Zhang Kai,2012.Study on Method and Application of Surrounding Rock Dynamic Classification of the Karst Tunnel—Taking the Karst Tunnels in Xuda Railway as Example[D].Chengdu:Chengdu University of Technology.
Zhang Q, Jiang Q, Li Y H,et al,2021.Quality evaluation of rock mass using RMR14 based on multi-source data fusion[J].Sensors,21(21):7108-7108.
Zhou Tan, Hu Jianhua, Kuang Ye,et al,2019.Rock mass quality evaluation method and application based on fuzzy RES-multidimensional cloud model[J].The Chinese Journal of Nonferrous Metals,29(8):1771-1780.
蔡文,郭开仲,许楚龙,等,1986.广东环境投资的物元分析[J].广东工学院学报,(2):15-31.
江杰,蒲鸥,欧孝夺,等,2018.岩溶区公路隧道围岩分级专家系统设计与应用[J].长江科学院院报,35(7):94-99.
李清波,杜朋召,2020.基于边缘阈值分割的钻孔图像RQD自动分析方法研究[J].岩土工程学报,42(11):2153-2160.
刘飞跃,刘一汉,杨天鸿,等,2021.基于岩芯图像深度学习的矿山岩体质量精细化评价[J].岩土工程学报,43(5):968-974.
马世伟,李守定,李晓,等,2020.隧道岩体质量智能动态分级KNN方法[J].工程地质学报,28(6):1415-1424.
穆成林,黄润秋,裴向军,等,2016.基于组合赋权—未确知测度理论的围岩稳定性评价[J].岩土工程学报,38(6):1057-1063.
牛文林,李天斌,2015.岩爆隧道岩体质量评价的BQ法优化[J].成都理工大学学报(自然科学版),42(6):658-664.
王家全,柏蕾,林志南,等,2020.岩溶区下伏溶洞加筋土地基承载破坏特性分析[J].自然灾害学报,29(5):173-181.
王少勇,吴爱祥,韩斌,等,2014.自然崩落法矿岩可崩性模糊物元评价方法[J].岩石力学与工程学报,33(6):1241-1247.
王雯雯,2019.基于改进CRITIC-云模型的区域生态安全评价研究[D].淮南:安徽理工大学.
王心义,姚孟杰,张建国,等,2019.基于改进AHP法与模糊可变集理论的煤层底板突水危险性评价[J].采矿与安全工程学报,36(3):558-565.
吴贤国,王洪涛,何云,等,2018.基于模糊物元的岩溶隧道开挖稳定性评价[J].中国安全科学学报,28(1):99-104.
殷欣,刘泉声,王心语,等,2020.基于组合赋权和属性区间识别理论的岩爆烈度分级预测模型[J].煤炭学报,45(11):3772-3780.
张凯,2012.岩溶隧道围岩动态分级方法及应用研究——以叙大铁路岩溶隧道为例[D].成都:成都理工大学.
周坦,胡建华,匡也,等,2019.基于模糊RES-多维云模型的岩体质量评判方法与应用[J].中国有色金属学报,29(8):1771-1780.
[1] 盛宇航, 裴佃飞, 齐兆军, 荆晓东. 尾砂粒级组成对胶结充填料流变特性与强度的影响[J]. 黄金科学技术, 2024, 32(4): 631-639.
[2] 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653.
[3] 胡松涛, 朱庚杰, 张军童, 徐世群, 寇云鹏. 胶东地区黄金矿山细尾砂胶结充填应用研究[J]. 黄金科学技术, 2024, 32(3): 425-436.
[4] 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457.
[5] 邱泓杰, 邱贤阳, 张舒, 陈辉, 史秀志, 沈文博, 陶铁军, 段武全. 深井高应力环境下束状组合孔拉槽爆破优化研究[J]. 黄金科学技术, 2024, 32(2): 318-329.
[6] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[7] 海龙, 鲍荣涛, 谭世林, 房祥龙. 分层尾砂胶结充填体力学特性及优化试验研究[J]. 黄金科学技术, 2023, 31(5): 763-772.
[8] 刘志祥,晏孟洋,张双侠,熊帅,王凯. 考虑岩石微缺陷影响的损伤本构模型[J]. 黄金科学技术, 2023, 31(3): 507-515.
[9] 李杰林,王京瑶,肖益盖,李小双. 不同应力路径下岩石细观力学性能离散元研究[J]. 黄金科学技术, 2023, 31(1): 102-112.
[10] 谭宝会,王永定,张志贵,龙卫国,李斌,何建元,龚臻. 复杂开采条件下低品位镍矿安全高效回采方案研究[J]. 黄金科学技术, 2023, 31(1): 88-101.
[11] 杨晴,杨仕教,张冉玥. 基于上澄清液浊度的超细尾砂絮凝沉降试验[J]. 黄金科学技术, 2022, 30(6): 948-957.
[12] 苏华友,王永定,谭宝会,龙卫国,杨宁,张志贵,陈星明. 大面积胶结充填体诱导冒落机理及其发展过程研究[J]. 黄金科学技术, 2022, 30(5): 713-723.
[13] 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712.
[14] 赵奎,刘周超,曾鹏,龚囱. 单轴压缩下不同尺寸充填体能量损伤演化特征试验研究[J]. 黄金科学技术, 2022, 30(4): 540-549.
[15] 郭良银,蒋万飞,宋召法,刘晓光,张金超. 新城金矿阶段空场嗣后充填法开采大直径深孔切槽爆破方法[J]. 黄金科学技术, 2022, 30(4): 585-593.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!