黄金科学技术 ›› 2023, Vol. 31 ›› Issue (3): 497-506.doi: 10.11872/j.issn.1005-2518.2023.03.122
Boyang FANG(),Guoyan ZHAO(),Ju MA,Liqiang CHEN,Zheng JIAN
摘要:
为提高巷道围岩松动圈预测准确率,给围岩支护和地压管理提供更科学的指导,提出了一种新的预测方法。采用改进的Adaboost回归算法对3种机器学习算法进行集成优化,即在Adaboost回归算法中寻找误差率阈值的最优值,实现Adaboost全局最优的集成效果。应用网格搜索对BP、SVM和RF的超参数进行优化,建立BP-Adaboost、SVM-Adaboost和RF-Adaboost回归预测模型。结果表明:BP-Adaboost模型的预测性能最好,误差率为7.65%。结合矿山松动圈测试实例进行验证分析,平均相对误差为4.15%。因此,所提出的模型能够为围岩松动圈预测提供参考,可以满足工程应用的需求。
中图分类号:
Chao Z, Kim H,2020. Brain image segmentation based on the hybrid of back propagation neural network and Adaboost system[J].Journal of Signal Processing Systems for Signal Image and Video Technology,92(3):289-298. | |
Chen Chong, Li Xibing, Feng Fan,2018.Numerical study on damage zones of the induced roadway surrounding rock[J].Gold Science and Technology,26(6):771-779. | |
Dong Fangting,2001.The Supporting Theory Based on Broken Rock Zone and Its Application Technology[M]. Beijing:China Coal Industry Publishing Home. | |
Gao Wei, Zheng Yingren,2002.Evolutionary neural network model on prediction of loosen zone around roadway[J]. Chinese Journal of Rock Mechanics and Engineering,(5):658-661. | |
Jing Feng,2008.Research on the Distribution Rule of the Shallow Crustal Geostress Field in the China Mainland and Engineering Disturbance Characteristics[D].Beijing:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences. | |
Jing Yue, Wang Shaofeng, Lu Jintao,2021.Thickness prediction of the excavation damage zone and non-explosive mechanized mining criterion[J].Gold Science and Technology,29(4):525-534. | |
Li Guosheng, Zhang Hui, Jiang Shuaiqi,2018.Technology for enhancing supporting roadway surrounding rock influenced by frequent mining and its application[J].China Sa-fety Science Journal,28(7):142-147. | |
Momeni M, Peyghami M R, Tarzanagh D A,2020. A new stochastic limited memory BFGS algorithm[J].Journal of Ma-thematical Extension,14(3):65-83. | |
Qian Zhenyu, Ren Fenhua, Miao Shengjun,et al,2013.Optimization design of roadway support based on field measurement of surrounding rock broken zone[J].Metal Mine,42(10):16-20. | |
Shen Jinsheng, Tang Xionghou,2012.Study on influence factors of broken rock zone around mining roadway[J].Mineral Engineering Research,27(2):10-14. | |
Wang Wei,2014.Study on Dading Mountain Mine RoadwayRock Loose Circle the Mining and Its Influence[D].Mianyang:Southwest University of Science and Technology. | |
Wang Xinfeng, He Yi, Lu Mingyuan,et al,2021.Study on deformation and failure characteristics of deep roadway surrounding rock under excavation unloading disturbance [J]. China Safety Science Journal,31(8):83-90. | |
Wu Tao, Dai Jun, Du Meili,et al,2015.Surrounding rock loosing circle test based on acoustic test technology[J].Safety in Coal Mines,46(1):169-172. | |
Wu Yongping, Zhai Jin, Xie Panshi,et al,2013.Measurement of loosing circle in surrounding rock of gateway based on technology of geological radar detection[J].Coal Science and Technology,41(3):32-34,38. | |
Xiong B, Li R, Ren D,et al,2021.Prediction of flooding in the downstream of the Three Gorges Reservoir based on a back propagation neural network optimized using the Adaboost algorithm[J].Natural Hazards,107(2):1559-1575. | |
Xue Xinhua,2006.Application of algorithm neural network method in the prediction of loosen zone around roadway[J]. Geotechnical Engineering Technique,(5):237-239. | |
Yu Qinglei, Pu Jiangyong, Le Zhihua,et al,2021.Study on the broken rock zone of roadway in skarn copper-iron mine based on geological radar[J]. Metal Mine,50(3):46-53. | |
Zhao Guoyan, Wu Hao,2013.Support vector machine model for predicting the thickness of excavation damaged zone[J]. Journal of Guangxi University(Natural Science Edition),38(2):444-450. | |
Zhao Linlin, Wen Guofeng, Shao Liangshan,2018.PCA-Adaboost model for predicting coal spontaneous combustion in caving zone with imbalanced data[J].China Safety Science Journal,28(3):74-78. | |
Zhou J, Li E, Yang S,et al,2019. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories[J]. Safety Science,118:505-518. | |
Zhou J, Li X B,2011. Evaluating the thickness of broken rock zone for deep roadways using nonlinear SVMs and multiple linear regression model[J]. Procedia Engineering,26:972-981. | |
Zhu Chuanqu,1999.Stability classification and prediction of lo-osening circle size in the surrounding rock of back mining roadway[J].Gold Science and Technology,7(Supp.1):64-67. | |
Zhu Zhijie, Zhang Hongwei, Chen Ying,2014. Prediction model of loosening zones around roadway based on MPSO-SVM[J].Computer Engineering and Applications,50(12):1-5. | |
陈冲,李夕兵,冯帆,2018.诱导巷道的围岩松动破坏区数值研究[J].黄金科学技术,26(6):771-779. | |
董方庭,2001. 巷道围岩松动圈支护理论与应用技术[M]. 北京:煤炭工业出版社. | |
高玮,郑颖人,2002.巷道围岩松动圈预测的进化神经网络法[J].岩石力学与工程学报,(5):658-661. | |
景锋,2008. 中国大陆浅层地壳地应力场分布规律及工程扰动特征研究[D].北京:中国科学院武汉岩土力学研究所. | |
景岳,王少锋,鲁金涛,2021.矿岩开挖松动区厚度预测及非爆机械化开采判据[J].黄金科学技术,29(4):525-534. | |
李国盛,张辉,蒋帅旗,2018. 频繁采动影响巷道围岩强化支护技术及其应用[J].中国安全科学学报,28(7):142-147. | |
钱振宇,任奋华,苗胜军,等,2013.基于围岩松动圈现场测量的巷道支护优化[J].金属矿山,42(10):16-20. | |
沈金生,唐雄厚,2012. 回采巷道围岩松动圈影响因素分析[J].矿业工程研究,27(2):10-14. | |
王伟,2014. 大顶山矿区回采巷道围岩松动圈及影响研究[D]. 绵阳:西南科技大学. | |
王新丰,何毅,陆明远,等,2021.开挖卸荷扰动深部巷道围岩变形破坏特征研究[J].中国安全科学学报,31(8):83-90. | |
吴涛,戴俊,杜美利,等,2015.基于声波法测试技术的巷道围岩松动圈测定[J].煤矿安全,46(1):169-172. | |
伍永平,翟锦,解盘石,等,2013.基于地质雷达探测技术的巷道围岩松动圈测定[J].煤炭科学技术,41(3):32-34,38. | |
薛新华,2006.遗传神经网络法在巷道围岩松动圈预测中的应用[J].岩土工程技术,(5):237-239. | |
于庆磊,蒲江涌,勒治华,等,2021.基于地质雷达的矽卡岩型铜铁矿巷道松动圈研究[J].金属矿山,50(3):46-53. | |
赵国彦,吴浩,2013.松动圈厚度预测的支持向量机模型[J].广西大学学报(自然科学版),38(2):444-450. | |
赵琳琳,温国锋,邵良杉,2018.不均衡数据下的采空区煤自燃PCA-Adaboost预测模型[J].中国安全科学学报,28(3):74-78. | |
朱川曲,1999.回采巷道围岩稳定性分类及松动圈尺寸预测[J].黄金科学技术,7(增1):64-67. | |
朱志洁,张宏伟,陈蓥,2014.基于MPSO-SVM巷道围岩松动圈预测研究[J].计算机工程与应用,50(12):1-5. |
[1] | 赵国彦, 胡凯译, 李洋, 刘雷磊, 王猛. 基于BWO-RF模型的岩体质量评价方法[J]. 黄金科学技术, 2024, 32(2): 270-279. |
[2] | 张帅, 赵鑫, 彭祥玉, 王宇斌, 桂婉婷, 田家怡. 基于双隐含层BP神经网络的某金矿回收率预测研究[J]. 黄金科学技术, 2024, 32(1): 170-178. |
[3] | 周昌微, 谢贤平, 都喜东. 基于曲线拟合和神经网络的独头巷道CO浓度预测研究[J]. 黄金科学技术, 2024, 32(1): 75-81. |
[4] | 邓红卫, 罗亮. 基于SMA算法优化随机森林的PPV预测模型[J]. 黄金科学技术, 2023, 31(4): 624-634. |
[5] | 温廷新,苏焕博. 基于MICE_RF的组合赋权—极限随机树岩爆预测模型[J]. 黄金科学技术, 2022, 30(3): 392-403. |
[6] | 谢饶青, 陈建宏, 肖文丰. 基于NPCA-GA-BP神经网络的采场稳定性预测方法[J]. 黄金科学技术, 2022, 30(2): 272-281. |
[7] | 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833. |
[8] | 骆正山,黄仁惠,申国臣. 基于KPCA-IPSO-LSSVM的充填管道磨损风险预测[J]. 黄金科学技术, 2021, 29(2): 245-255. |
[9] | 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929. |
[10] | 谭吉玉,刘高常. 基于小波支持向量机模型的矿区生态安全评价方法研究[J]. 黄金科学技术, 2020, 28(6): 902-909. |
[11] | 许瑞, 侯奎奎, 王玺, 刘兴全, 李夕兵. 基于核主成分分析与SVM的岩爆烈度组合预测模型[J]. 黄金科学技术, 2020, 28(4): 575-584. |
[12] | 卜斤革,陈建宏. 基于粒子群算法优化BP神经网络的溶浸开采浸出率预测[J]. 黄金科学技术, 2020, 28(1): 82-89. |
[13] | 韩超群,陈建宏,周智勇,杨珊. 基于主成分分析—支持向量机模型的矿岩可爆性等级预测研究[J]. 黄金科学技术, 2019, 27(6): 879-887. |
[14] | 肖文丰,陈建宏,陈毅,王喜梅. 基于神经网络与遗传算法的多目标充填料浆配比优化[J]. 黄金科学技术, 2019, 27(4): 581-588. |
[15] | 随晓丹,罗周全,秦亚光,王玉乐,彭东. 基于小波分解的尾矿坝浸润线预测方法研究[J]. 黄金科学技术, 2019, 27(1): 137-143. |
|