img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (3): 507-515.doi: 10.11872/j.issn.1005-2518.2023.03.164

• 采选技术与矿山管理 • 上一篇    下一篇

考虑岩石微缺陷影响的损伤本构模型

刘志祥(),晏孟洋(),张双侠,熊帅,王凯   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2022-11-01 修回日期:2023-03-30 出版日期:2023-06-30 发布日期:2023-07-20
  • 通讯作者: 晏孟洋 E-mail:liulzx@csu.edu.cn;205511005@csu.edu.cn
  • 作者简介:刘志祥(1967-),男,湖南宁乡人,博士生导师,从事岩石力学与采矿工程研究工作。liulzx@csu.edu.cn
  • 基金资助:
    国家重点研发计划项目“深部厚大矿体大参数高效连续开采技术”(2022YFC290410);国家自然科学基金项目“海底金属矿开采充填体约束矿柱群力学模型构建与混沌破坏机制”(51974359)

Damage Constitutive Model Considering the Effect of Rock Microdefects

Zhixiang LIU(),Mengyang YAN(),Shuangxia ZHANG,Shuai XIONG,Kai WANG   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2022-11-01 Revised:2023-03-30 Online:2023-06-30 Published:2023-07-20
  • Contact: Mengyang YAN E-mail:liulzx@csu.edu.cn;205511005@csu.edu.cn

摘要:

为准确描述岩石应力—应变曲线非线性过程,提出了考虑岩石微缺陷影响的损伤本构模型。首先对含微缺陷岩石进行分析,把含微缺陷岩石抽象成不含微缺陷的岩石骨架部分和微缺陷部分。岩石微缺陷包括初始空隙和岩石受载新增的微裂纹,微缺陷只能产生应变,不能承受应力。初始空隙产生的应变反映压密阶段的非线性特征,新增的微裂纹产生的应变反映岩石峰后阶段应变软化,用修正系数b来表示新增微缺陷的影响,假设岩石骨架部分的损伤符合Weibull概率分布,最后推导出基于微裂纹的损伤本构模型,并给出参数VmnF0mb的确定方法,对模型参数进行讨论。用砂岩和苏长岩试验数据进行验证,结果显示试验数据与理论结果相吻合。

关键词: 含微缺陷岩石, 本构模型, 微缺陷, 压密阶段, 应变软化, 修正系数

Abstract:

In order to accurately describe the whole process of rock stress-strain curve,a statistical damage contitutive model considering the effect of rock microdefects was proposed.Firstly,rocks containing microdefects are analysed and abstracted into a rock skeleton part and a defective part without microdefects.The rock microdefects include initial microdefects and new microdefects added to the rock by loading,which can only generate strain but not stress.The strain generated by the initial microdefects is negatively exponential to the stress during the compression-density stage,and the model parameters n and Vm are obtained by fitting the experimental curve of closed strain-stress for the microdefects.After the compression-density stage,the initial micro-defects are completely closed and the resulting strain is a constant.As additional micro-defects are mainly generated in large numbers in the post-peak stage,the effect of additional micro-defects on the post-peak stage is mainly considered.A variable b in the range of 0 to 1 is used to represent the weakening effect of the strain formed by the additional micro-defects on the strain generated in the rock.Different values of b can reflect the degree of strain softening in the rock,and a method for determining the value of b is given to obtain the value of b under different stress states for different rocks.The deformation of the rock skeletal part without micro-defects and whose damage conforms to the Weibull probability distribution,the deformation of the rock skeletal part and the micro-defective part make up the deformation of the rock,which leads to the derivation of the damage constitutive model of the rock,and the specific determination method of the parameters m and F0 of this damage constitutive model is given.The parameters of the model are discussed.The smaller the value of b,the greater the strain generated by the new microcracks in the rock and the more obvious the strain softening is.The damage variables of the rock are analysed for different values of b.The smaller the value of b,the faster the damage value of the rock reaches 1 and the faster the skeletal part of the rock is damaged.The damage costitutive model in this paper takes into account the compression-density phase,the strain-softening phase,the effect of residual strain,and can characterise all phases of the rock stress-strain curve,and the model parameters are small and the method of determination is clear.Finally,the model is validated with sandstone and saprolite test data,and the test data agree with the theoretical results,indicating the reasonableness of the model.

Key words: rocks with microdefects, constitutive model, microdefects, compression-density stage, strain softening, correction factor

中图分类号: 

  • TD853

图1

岩石微缺陷集中示意图"

图2

岩石损伤与微缺陷变化示意图"

图3

砂岩微裂纹萌生前应力—应变曲线"

图4

岩石微缺陷闭合应变—应力试验与拟合曲线"

表1

微缺陷闭合模型参数"

岩石种类E/GPaεcc/‰Vm/‰nR2(拟合系数)
砂岩281.371.434.640.9468
苏长岩850.670.6814.710.9924

图5

岩石微裂纹萌生前试验与理论应变—应力曲线"

表2

砂岩和苏长岩损伤演化方程参数"

岩石

类型

σ33

/MPa

σ11r/MPaε11p/%σ11p/MPab=bMSEminF0/%m
砂岩325.14740.74107.12210.700.52718.7655
537.20000.85132.17090.740.66607.5065
862.94580.98156.67920.850.92743.4272
苏长岩356.87320.44249.12160.900.43076.8780
569.09540.50274.09480.850.47076.8579
8101.78400.58306.44130.800.51926.6992

图6

砂岩试验数据与理论曲线比较"

图7

苏长岩试验数据与理论曲线比较"

图8

σ3=3 MPa时不同b值砂岩理论与试验曲线"

图9

σ3=3 MPa时不同b值下砂岩损伤演化"

Cao W, Zhao H, Li X,2010.Statistical damage model with strain softening and hardening for rocks under the influence of voids and volume changes[J].Canadian Geotechnical Journal,47(8):857-871.
Cao Wengui, Zhang Chao, He Min,2016.A statistical damage simulation method for rock strain softening considering the characteristics of void compacting stage[J].Journal of Geotechnical Engineering,38(10):1754-1761.
Cao Wengui, Zhao Heng, Li Xiang,2012.A statistical damage simulation method for the whole process of rock deformation based on residual strength deformation phase characteristics[J].Journal of Civil Engineering,45(6):139-145.
Cao Wengui, Zhao Minghua, Tang Xuejun,2003.Study on statistical damage simulation of rock fracture process[J].Journal of Geotechnical Engineering,(2):184-187.
Chen K, Tang M, Guo Z,2019.Comparative study on three-dimensional conventional and modified statistical damage constitutive models[J].Multiscale and Multidisciplinary Modeling,Experiments and Design,2(4):259-267.
Chen S, Qiao C S, Ye Q,2018.Comparative study on three-dimensional statistical damage constitutive modified model of rock based on power function and Weibull distribution[J].Environmental Earth Sciences,77(3):108.
Gao M B, Li T B, Wei T,et al,2018.A statistical constitutive model considering deterioration for brittle rocks under a coupled thermal-mechanical condition[J].Geofluids,2018:1-10.DOI:10.1155/2018/3269423 .
doi: 10.1155/2018/3269423
He Manchao, Xie Heping, Peng Suping,2005.Study on rock mechanics in deep mining engineering[J].Chinese Journal of Rock Mechanics and Engineering,24(16):2803-2813.
Hu B, Yang S Q, Xu P,et al,2018.Nonlinear rheological damage model of hard rock[J].Journal of Central South University,25(7):1665-1677.
Huang J, Zhao M, Du X,2018.An elasto-plastic damage model for rocks based on a new nonlinear strength criterion[J].Rock Mechanics and Rock Engineering,51(5):1413-1429.
Jia Baoxin, Chen Guodong, Liu Fengpu,2022.Ontogenetic model of rock damage at high temperature and its validation[J].Geotechnics,43(Supp.2):63-73.
Lemaitre J A,1985.Continuous damage mechanics model for ductile materials[J].Journal of Engineering Materials and Technology,107(1):83-89.
Li Haichao, Zhang Sheng,2017.Rock damage model based on modified Lemaitre strain equivalence assumption[J].Geotechnics,38(5):1321-1326.
Liang Mingchun, Miao Shengjun, Cai Meifeng,2021.Ontogenetic model of rock damage considering shear expansion properties and post-peak morphology[J].Journal of Rock Mechanics and Engineering,40(12):2392-2401.
Liu D, He M, Cai M,2018.A damage model for modeling the complete stress-strain relations of brittle rocks under uniaxial compression[J].International Journal of Damage Mechanics,27(7):1000-1019.
Miao S, Wang H, Cai M,2018.Damage constitutive model and variables of cracked rock in a hydro-chemical environment[J].Arabian Journal of Geosciences,11:1-14.
Peng J, Rong G, Cai M,2015.A model for characterizing crack closure effect of rocks[J].Engineering Geology,189:48-57.
Yumlu M, Ozbay M U,1995.A study of the behaviour of brittle rocks under plane strain and triaxial loading conditions[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,32(7):725-733.
Zhang Chao, Chen Qiunan, Yang Qijun,2020.Simulation of the whole process of deformation damage of brittle rocks considering initial void closure and its influence[J].Journal of Coal,45(3):1044-1052.
Zhang Chao, Yang Chuqing, Bai Yun,2021.Analysis of damage evolution of rock-like brittle materials and its modeling method[J].Geotechnics,42(9):2344-2354.
曹文贵,张超,贺敏,2016.考虑空隙压密阶段特征的岩石应变软化统计损伤模拟方法[J].岩土工程学报,38(10):1754-1761.
曹文贵,赵衡,李翔,2012.基于残余强度变形阶段特征的岩石变形全过程统计损伤模拟方法[J].土木工程学报,45(6):139-145.
曹文贵,赵明华,唐学军,2003.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,( 2):184-187.
何满潮,谢和平,彭苏萍,等,2005.深部开采岩体力学研究[J].岩石力学与工程学报,24(16):2803-2813.
贾宝新,陈国栋,刘丰溥,2022.高温下岩石损伤本构模型及其验证[J].岩土力学,43(增2):63-73.
李海潮,张升,2017.基于修正Lemaitre应变等价性假设的岩石损伤模型[J].岩土力学,38(5):1321-1326.
梁明纯,苗胜军,蔡美峰,2021.考虑剪胀特性和峰后形态的岩石损伤本构模型[J].岩石力学与工程学报,40(12):2392-2401.
张超,陈秋南,杨期君,2020.考虑初始空隙闭合及其影响的脆性岩石变形破坏全过程模拟[J].煤炭学报,45(3):1044-1052.
张超,杨楚卿,白允,2021.岩石类脆性材料损伤演化分析及其模型方法研究[J].岩土力学,42(9):2344-2354.
[1] 梅倩玮, 陈刚, 罗凤强, 马玲, 龚红胜, 龙妍竹. 天然岩石裂隙面粗糙度尺寸效应及方向性研究[J]. 黄金科学技术, 2024, 32(2): 290-305.
[2] 靳少博,刘科伟,黄进,靳绍虎. 单轴压缩下充填体损伤本构模型研究[J]. 黄金科学技术, 2021, 29(4): 555-563.
[3] 李怀鑫, 林斌, 陈士威, 王鹏. 不同含水率下红黏土软化模型及强度试验研究[J]. 黄金科学技术, 2020, 28(3): 442-449.
[4] 秦世康,陈庆发,尹庭昌. 岩石与岩体冻融损伤内涵区别及研究进展[J]. 黄金科学技术, 2019, 27(3): 385-397.
[5] 程昊, 徐涛, 周广磊, 房珂. 非均质岩石破裂及声发射演化数值模拟[J]. 黄金科学技术, 2018, 26(2): 170-178.
[6] 赵国彦,侯俊,张小瑞,李地元,王涛. 磷石膏膏体充填体力学特性研究[J]. 黄金科学技术, 2016, 24(5): 7-12.
[7] 陈辰,卓毓龙,曹世荣,冯萧,王晓军. 块石含量对充填体残余承载阶段损伤演化影响研究[J]. 黄金科学技术, 2016, 24(4): 92-95.
[8] 卓毓龙,陈辰,曹世荣,王晓军,冯萧. 块石对充填体强度特性及损伤演化的影响[J]. 黄金科学技术, 2016, 24(3): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!