img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 531-545.doi: 10.11872/j.issn.1005-2518.2023.04.118

• 矿产勘查与资源评价 •    下一篇

湘东北热液型钴矿床中含钴矿物特征及其对成矿的指示意义

宁钧陶(),黄宝亮(),董国军,周岳强,高卓龙,康博   

  1. 湖南省地质灾害调查监测所,湖南 长沙 410004
  • 收稿日期:2022-09-13 修回日期:2022-11-22 出版日期:2023-08-30 发布日期:2023-09-20
  • 通讯作者: 黄宝亮 E-mail:1195516373@qq.com;398552705@qq.com
  • 作者简介:宁钧陶(1970-),男,湖南隆回人,教授级高工,从事地质找矿及成矿规律研究工作。1195516373@qq.com
  • 基金资助:
    湖南省自然科学基金项目“长沙—平江钴矿带钴的精细成矿过程与富集机制”(2021JJ30817);湖南省自然资源厅科技项目“湘东北钴矿成矿规律与找矿方向研究”(2021-20)

Characteristics of Cobalt-bearing Minerals in Hydrothermal Cobalt Deposits in Northeastern Hunan Province and Their Implication for Mineralization

Juntao NING(),Baoliang HUANG(),Guojun DONG,Yueqiang ZHOU,Zhuolong GAO,Bo KANG   

  1. Hunan Institute of Geological Disaster Investigation and Monitoring,Changsha 410004,Hunan,China
  • Received:2022-09-13 Revised:2022-11-22 Online:2023-08-30 Published:2023-09-20
  • Contact: Baoliang HUANG E-mail:1195516373@qq.com;398552705@qq.com

摘要:

湘东北地区热液型钴多金属矿床赋存于长沙—平江断裂带下盘的构造热液蚀变岩带内,目前对带内钴的赋存形式及含钴矿物的认识并不充分,因此制约了对该带钴成矿机制的理解。详细的矿相学观察、TIMA和电子探针分析结果表明:黄铁矿是横洞矿区重要的含钴矿物,具有复杂的结构特征,表现为富钴黄铁矿呈环带状或不规则状交代核部贫钴黄铁矿,富钴黄铁矿Co含量高达3.52%,Ni含量低于0.09%,富钴黄铁矿的形成与流体耦合的溶解再沉淀机制有关。辉砷钴矿是金塘钴多金属矿区最主要的载钴矿物,呈他形粒状产出或被包裹在毒砂内,颗粒大小为3~45 μm,Co含量为9.51%~23.21%,Ni含量为5.52%~15.24%。结合井冲矿区已有工作,提出在连云山地区从控矿断裂带南西到北东方向,含钴矿物存在由辉砷钴矿向黄铁矿转变,且辉砷钴矿中Co含量升高、Ni含量降低,而黄铁矿中Co含量降低,这一变化趋势可能与成矿流体的运移方向和物理化学条件(如pH值和硫逸度等)有关。结合湘东北地区钴(多金属)矿床(点)严格受长沙—平江断裂带控矿,提出连云山地区深大断裂的南西侧可作为今后湘东北钴矿勘查的重点方向。

关键词: 黄铁矿, 辉砷钴矿, TIMA分析, 热液型钴矿床, 金塘矿区, 横洞矿区, 湘东北

Abstract:

A series of hydrothermal cobalt polymetallic deposits in northeastern Hunan Province occurr along the Changsha-Pingjiang fault zone,the middle section of the Jiangnan orogen belt. These deposits are hosted in the tectonic-hydrothermal alteration belt at the footwall of the Changsha-Pingjiang fault zone,and controlled by the fault zone and its secondary structures.However,the occurrence state of cobalt and cobalt-containing minerals in the whole belt isn’t sufficient,which restricts the understanding of the metallogenic process of cobalt in the belt.The detailed mineralogical observation,TIMA analysis and EPMA showed that the pyrite is the main sulfide and also an important cobalt-containing mineral in the Hengdong deposit.It exhibits a complex textural characteristics,that is,the cobalt-rich pyrite with silk-shaped,ring-shaped or irregularly at the edge replaced by the cobalt-poor pyrite at the core.The cobalt-rich pyrite has a clear oscillating zone exhibits high Co (up to 3.52%) but low Ni contents (≤0.09%). The complex zoning indicated that fluid-coupled dissolution and precipitation mechanism was responsible for the formation of Co-rich pyrite. In comparison,cobaltite ore is the most important cobalt-bearing mineral in the Jintang cobalt polymetallic deposit,which is closely related to pyrite,marcasite,and arsenopyrite,and occurs as an isolated granular form or wrapped in arsenopyrite particles.The particle size of cobaltite is between 3 μm and 45 μm. The contents of Co,Fe,and Ni of cobalt vary from 9.51% to 23.21%(average is 15.50%),4.33% to 17.66%(average is 9.46%),and 5.52% to 15.24%(average is 9.31%),respectively.Combied with the occurrence form of cobalt in the Jingchong cobalt-copper polymetallic deposit,it could be concluded that the cobalt-containing minerals vary from cobaltite to pyrite along the Changsha-Pingjiang fault zone from southwest to northeast.Furthermore,the Co contents in cobaltite increases tend to while Ni contents decreases,and the high content of Co in pyrite decreases.The mineralizing disparity could be explained by controlling factors such as ore-forming fluid migration direction and physical-chemical conditions(e.g.,pH value and fS2). Combined with Co(-polymetallic) orebodies controlled by the NE-trending Changsha-Pingjiang deep fault zone,it was proposed that the southwestern part of the deep fault in Lianyunshan area would be the focus of next cobalt exploration in northeastern Hunan Province.

Key words: pyrite, arsenopyrite cobalt ore, TIMA analysis, hydrothermal cobalt deposit, Jintang mining area, Hengdong mining area, northeastern Hunan

中图分类号: 

  • P618.51

图1

湘东北地区区域地质与矿产分布简图(修改自许德如等,2009)Ⅰ-汨罗断陷盆地;Ⅲ-幕阜山—望湘断隆;Ⅲ-长沙—平江断陷盆地;Ⅳ-浏阳—衡东断隆;Ⅴ-醴陵—攸县断陷盆地;1.第四系—白垩系;2.三叠—泥盆系;3.志留—震旦系;4.新元古界板溪群;5.新元古界冷家溪群;6.古元古界—太古宇;7.燕山期花岗岩;8.印支期花岗岩;9.加里东期花岗岩;10.元古宙花岗岩;11.断裂;12.韧性剪切带;13.金矿床(点);14.铅锌铜多金属矿床(点);15.钴矿床(点)/钴多金属矿床(点);16.稀有金属矿床"

图2

横洞钴矿床地质简图(修改自Zou et al.,2018)1.第四系;2.上白垩统戴家坪组;3.新元古界冷家溪群;4.连云山花岗岩;5.构造挤压破碎岩带;6.蚀变构造角砾岩带;7.混合岩带;8.钴矿体;9.断层;10.钴矿化异常"

图3

湘东北地区不同类型钴矿石特征(a)~(b)横洞矿区石英脉型矿石;(c)横洞矿区石英脉型矿石;(d)金塘矿区石英脉型矿石切穿褪色化板岩,二者又被晚期的菱铁矿脉切穿;(e)金塘矿区钴矿脉被晚期铅锌矿脉切穿;(f)金塘矿区蚀变岩型矿石被晚期石英+菱铁矿脉切穿Qtz-石英;Sd-菱铁矿;Py-黄铁矿;Ccp-黄铜矿;Sph-闪锌矿;Gn-方铅矿"

图4

金塘钴多金属矿地质简图1.第四系;2.上白垩统戴家坪组;3.中—上石炭统壶天群;4.中泥盆统棋梓桥组;5.新元古界冷家溪群;6.连云山花岗岩;7.构造挤压破碎岩带;8.石英脉;9.矿化蚀变带;10.断层;11.倾伏背斜"

图5

不同类型钴矿床中含钴硫化物显微镜下特征(a)~(c)横洞矿区黄铁矿具有复杂结构,富钴黄铁矿(Co-Py)沿裂隙或颗粒边部交代早期的黄铁矿(反射光);(d)金塘矿区毒砂呈自形—半自形细粒状(反射光);(e)~(f)金塘矿区白铁矿呈条板状产出,中间分布有细粒的黄铁矿,闪锌矿则沿颗粒粒间填充(反射光);(g)~(h)辉砷钴矿被包裹在毒砂颗粒之中,其中(g)为反射光,(h)为(g)的伽马图像Py-黄铁矿;Co-Py-富钴黄铁矿;Apy-毒砂;Cbt-辉砷钴矿;Ccp-黄铜矿;Mrc-白铁矿;Sph-闪锌矿;Gn-方铅矿"

图6

金塘矿区钴矿石的TIMA图像及辉砷钴矿粒度统计(a)金塘矿区钴矿石显微照片(反射光);(b)金塘矿区钴矿石对应的TIMA矿物相图;(c)为(b)矩形区域的TIMA矿物相图和BSE图像,BSE图像中的黄色标记为辉砷钴矿颗粒;(d)辉砷钴矿颗粒的粒度大小统计直方图"

表1

横洞矿区黄铁矿EPMA分析结果"

分析点号SFeCoNiAsSeSbPb总计
D0151.7747.900.250.010.260.100.020.0399.93
D0252.1747.650.470.090.120.03-0.01100.38
D0352.0544.362.980.010.330.030.020.0199.40
D0451.9944.522.55-0.240.030.070.0199.07
D0551.3346.181.92-0.250.110.010.0199.43
D0652.3943.793.41-0.330.140.020.0199.59
D0752.7844.991.720.080.260.010.010.0199.57
D0852.6146.980.200.020.190.020.01-99.81
D0953.6042.832.890.010.240.200.040.0199.33
D1052.7444.261.79-0.270.02--98.79
D1153.0243.912.890.010.28---99.83
D1252.3346.880.120.010.27-0.01-99.35
D1353.2742.893.52-0.190.020.02-99.68
D1453.9242.632.95-0.34-0.030.0199.49
D1552.1444.292.700.030.26-0.010.0199.16
D1652.7544.122.560.010.270.010.01-99.45
D1752.8244.372.67-0.320.01-0.0199.86

图7

含钴矿物的化学成分图解(a)横洞矿区黄铁矿的Co-Fe图解;(b)横洞矿区黄铁矿的As-S图解;(c)金塘矿区辉砷钴矿的Fe-Co-Ni三元图解,井冲辉砷钴矿数据来自Wang et al.(2022);(d)金塘矿区辉砷钴矿的Co-Ni+Fe图解"

表2

金塘钴多金属矿床中辉砷钴矿EPMA分析结果"

分析点号SFeCoNiAsSb总计化学式
D0118.904.3323.218.7045.130.18100.45(Fe0.13Co0.64Ni0.24)As0.97S0.95
D0219.656.5418.4611.3343.540.1299.64(Fe0.19Co0.50Ni0.31)As0.93S0.98
D0321.007.4615.519.7444.69-98.40(Fe0.23Co0.48Ni0.29)As1.08S1.19
D0421.2114.2112.126.1246.04-99.69(Fe0.45Co0.36Ni0.18)As1.09S1.17
D0520.7217.669.515.5245.90-99.31(Fe0.55Co0.28Ni0.16)As1.07S1.13
D0621.8314.9410.576.8645.52-99.72(Fe0.47Co0.32Ni0.21)As1.08S1.21
D0722.449.2716.985.9144.35-98.94(Fe0.30Co0.52Ni0.18)As1.07S1.26
D0819.716.8514.4015.2444.520.08100.80(Fe0.20Co0.39Ni0.41)As0.97S0.98
D0919.958.8519.697.7044.100.31100.60(Fe0.25Co0.54Ni0.21)As0.98S1.00
D1020.167.1014.0413.7643.600.1498.81(Fe0.21Co0.40Ni0.39)As0.95S1.05
D1120.058.2916.2110.4244.330.1699.45(Fe0.25Co0.46Ni0.30)As0.98S1.04
D1220.008.0315.3410.4344.730.1298.64(Fe0.25Co0.45Ni0.31)As1.00S1.07

图8

横洞矿区黄铁矿的BSE和波谱面扫描图像Py-黄铁矿;Co-Py-富钴黄铁矿注:面扫描图像中的数字代表对应元素的百分含量(%),缺失数据表示含量低于检测限"

Ahmed A H, Arai S, Ikenne M,2009.Mineralogy and paragenesis of the Co-Ni arsenide ores of Bou Azzer,Anti-Atlas,Morocco[J].Economic Geology,104(2):249-266.
Al-Khirbash S,2015.Genesis and mineralogical classification of Ni-laterites,Oman Mountains[J].Ore Geology Reviews,65:199-212.
Bajwah Z U, Seccombe P K, Offler R,1987.Trace element distribution,Co∶Ni ratios and genesis of the Big Cadia iron-copper deposit,New South Wales,Australia[J].Mineralium Deposita,22(4):292-300.
Borg S, Liu W, Pearce M,et al,2014.Complex mineral zoning patterns caused by ultra-local equilibrium at reaction interfaces[J].Geology,42:415-418.
Bralia A, Sabatini G, Troja F,1979.A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J].Mineralium Deposita,14(3):353-374.
Burisch M, Gerdes A, Walter B F,et al,2017. Methane and the origin of five-element veins:Mineralogy,age,fluid inclusion chemistry and ore forming processes in the Odenwald,SW Germany[J].Ore Geology Reviews,81:42-61.
Burisch M, Michael A W, Nowak M,et al,2016.The effect of temperature and cataclastic deformation on the composition of upper crustal fluids—An experimental approach[J].Chemical Geology,433:24-35.
Chen Qian, Song Wenlei, Yang Jinkun,et al,2021. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy:An example from TESCAN TIMA [J]. Mineral Deposits,40(2):345-368.
Deng T, Xu D R, Chi G X,et al,2017.Geology,geochronology,geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province,Jiangnan Orogen,South China[J].Ore Geology Reviews,88:619-637.
Dill H G, Botz R,1989.Lithofacies variation and unconformities in the metalliferous rocks underlying the Permian Kupferschiefer of the Stockheim Basin,Federal Republic of Germany[J].Economic Geology,84(5):1028-1046.
El Desouky H A, Muchez P, Cailteux J,2009.Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga copper belt,Democratic Republic of Congo[J].Ore Geology Reviews,36(4):315-332.
En-Naciri A, Barbanson L, Touray J C,1997.Brine inclusions from the Co-As (Au) Bou Azzer district,Anti-Atlas Mountains,Morocco[J].Economic Geology,92(3):360-367.
Feng Chengyou, Zhang Dequan, Dang Xingyan,2004.Cobalt resources of China and their exploitation and utilization[J].Mineral Deposits,93(1):93-100.
Feng Chengyou, Zhang Dequan, She Hongquan,et al,2006.Tectonic setting and metallogenic mechanism of Tuolugou cobalt(gold)deposit Qinghai Province[J].Mineral Deposits,25(5):544-561.
Gao Linzhi, Chen Jun, Ding Xiaozhong,et al,2011.Zircon SHRIMP U-Pb dating of the tuff bed of Lengjiaxi and Banxi groups,northeastern Hunan:Constraints on the Wuling Movement[J].Geological Bulletin of China,30(7):1001-1008.
Guilcher M, Schmaucks A, Krause J,et al,2021.Vertical zoning in hydrothermal U-Ag-Bi-Co-Ni-As systems:A case study from the Annaberg-Buchholz district,Erzgebirge (Germany)[J].Economic Geology,116(8):1893-1915.
Ji W B, Lin W, Faure M,et al,2017.Origin of the Late Jurassic to Early Cretaceous peraluminous granitoids in the northeastern Hunan Province (middle Yangtze region),South China:Geodynamic implications for the Paleo-Pacific subduction[J].Journal of Asian Earth Sciences,141:174-193.
Jiang Shaoyong, Wen Hanjie, Xu Cheng,et al,2019.Earth sphere cycling and enrichment mechanism of critical metals:Major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China,33(2):112-118.
Jiao Jiangang, Huang Xifeng, Yuan Haichao,et al,2009.Progress in the research of Deʾerni Cu(Co) ore deposit[J].Journal of Earth Sciences and Environment,31(1):42-47.
Markl G, Burisch M, Neumann U,2016.Natural fracking and the genesis of five-element veins[J].Mineralium Deposita,51(6):703-712.
Ning Juntao,2002.Analysis on metallogenic geologic conditions of original Co-deposits in northeast Hunan[J].Hunan Geology,21(3):192-200.
Putnis A,2009.Mineral replacement reactions[J].Reviews in Mineralogy and Geochemistry,70(1):87-124.
Qiu Z J, Fan H R, Goldfarb R,et al,2021.Cobalt concentration in a sulfidic sea and mobilization during orogenesis:Implications for targeting epigenetic sediment-hosted Cu-Co deposits[J].Geochimica et Cosmochimica Acta,305:1-18.
Saintilan N J, Creaser R A, Bookstrom A A,2017.Re-Os systematics and geochemistry of cobaltite (CoAsS) in the Idaho cobalt belt,Belt-Purcell Basin,USA:Evidence for middle Mesoproterozoic sediment-hosted Co-Cu sulfide mineralization with Grenvillian and Cretaceous remobilization[J].Ore Geology Reviews,86:509-525.
Scharrer M, Epp T, Walter B,et al,2022.The formation of (Ni-Co-Sb)-Ag-As ore shoots in hydrothermal galena-sphalerite-fluorite veins[J].Mineralium Deposita,57(5):853-885.
Scharrer M, Kreissl S, Markl G,2019.The mineralogical variability of hydrothermal native element-arsenide (five-element) associations and the role of physicochemical and kinetic factors concerning sulfur and arsenic[J].Ore Geology Reviews,113:103025.
Slack J F,2012.Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho cobalt belt:Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system[J].Economic Geology,107(6):1089-1113.
Vasyukova O V, Williams-Jones A E,2022.Constraints on the genesis of cobalt deposits:Part II.Applications to natural systems[J].Economic Geology,117(3):529-544.
Wang Denghong,2019.Study on critical mineral resources:Significance of research,determination of types,attributes of resources,progress of prospecting,problems of utilization,and direction of exploitation[J].Acta Geologica Sinica,93(6):1189-1209.
Wang J Q, Shu L S, Santosh M,2016.Petrogenesis and tectonic evolution of Lianyunshan complex,South China:Insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan Orogen[J].Gondwana Research,39:114-130.
Wang Yan, Zhong Hong, Cao Yonghua,et al,2020. Genetic classification,distribution and ore genesis of major PGE,Co and Cr deposits in China:A critical review[J].Chinese Science Bulletin,65(33):3825-3838.
Wang Z L, Wang Y F, Peng E K,et al,2022.Micro-textural and chemical fingerprints of hydrothermal cobalt enrichment in the Jingchong Co-Cu polymetallic deposit,South China[J].Ore Geology Reviews,142:104721.
Wang Zhilin, Wu Yang, Xu Deru,et al,2020.Occurrence state and ore-forming regularity of critical metal cobalt in the Changsha-Pingjiang fault zone,northeastern Hunan Province[J].Gold Science and Technology,28(6):779-785.
Wang Z L, Xu D R, Chi G X,et al,2017.Mineralogical and isotopic constraints on the genesis of the Jingchong Co-Cu polymetallic ore deposit in northeastern Hunan Province,South China[J].Ore Geology Reviews,88:638-654.
Wang Z L, Xu D R, Zhang Z C,et al,2015.Mineralogy and trace element geochemistry of the Co-and Cu-bearing sulfides from the Shilu Fe-Co-Cu ore district in Hainan Province of South China[J].Journal of Asian Earth Sciences,113:980-997.
Williams-Jones A E, Vasyukova O V,2022.Constraints on the genesis of cobalt deposits:Part I. Theoretical considerations[J].Economic Geology,117(3):513-528.
Xiong Y Q, Jiang S Y, Wen C H,et al,2020.Granite-pegmatite connection and mineralization age of the giant Renli TaNb deposit in South China:Constraints from U-Th-Pb geochronology of coltan,monazite,and zircon[J].Lithos,358:105422.
Xu D R, Deng T, Chi G X,et al,2017.Gold mineralization in the Jiangnan Orogenic Belt of South China:Geological,geochemical and geochronological characteristics,ore deposit-type and geodynamic setting[J].Ore Geology Reviews,88:565-618.
Xu D R, Gu X X, Li P C,et al,2007.Mesoproterozoic-Neoproterozoic transition:Geochemistry,provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block,South China[J].Journal of Asian Earth Sciences,29(5):637-650.
Xu Deru, Wang Li, Li Pengchun,et al,2009.Petrogenesis of the Lianyunshan granites in northeastern Hunan Province,South China,and its geodynamic implications[J].Acta Petrologica Sinica,25(5):1056-1078.
Xu Deru, Wang Zhilin, Nie Fengjun,et al,2019. Cobalt resources in China:Current research status and key scientific issues[J].Bulletin of National Natural Science Foundation of China,33(2):125-132.
Yan Lei, Fan Yu, Liu Yinan,2021.The occurrence and spatial distribution of cobalt in Longqiao iron deposit in Luzong Basin,Anhui Province[J].Acta Petrologica Sinica,37(9):2778-2790.
Yuan S D, Mao J W, Zhao P L,et al,2018.Geochronology and petrogenesis of the Qibaoshan Cu-polymetallic deposit,northeastern Hunan Province:Implications for the metal source and metallogenic evolution of the intracontinental Qinhang Cu-polymetallic belt,South China[J].Lithos,302:519-534.
Zhai Mingguo, Wu Fuyuan, Hu Ruizhong,et al,2019. Critical metal mineral resources:Current research status and scientific issues[J].Bulletin of National Natural Science Foundation of China,33 (2):106-111.
Zhang Aikui, Wang Jianjun, Liu Guanglian,et al,2021.Main minerogenetic series in the Qimantag area,Qinghai Province and their metallogenic models[J]. Acta Mineralogica Sinica,41(1):1-22.
Zhang L, Yang L Q, Groves D I,et al,2018.Geological and isotopic constraints on ore genesis,Huangjindong gold deposit,Jiangnan Orogen,southern China[J].Ore Geology Reviews,99:264-281.
Zhang Wenshan,1991. Structural and geochemical features of Changsha-Pingjiang fracture dynamic metamorphism zone in NE Hunan Province,China[J].Geotectonica et Metallogenica,2:100-109.
Zhao Junxing, Li Guangming, Qin Kezhang,et al,2019.A review of the types and ore mechanism of the cobalt deposits[J].Chinese Science Bulletin,64(24):2484-2500.
Zhou Yueqiang, Kang Bo,2017.Research on the characteristics of ore-forming fluids of Jingchong copper-cobalt polymetallic deposit in Hunan Province[J].Bulletin of Mineralogy,Petrology and Geochemistry,36(Supp.):836.
Zhou Y Q, Xu D R, Dong G J,et al,2021.The role of structural reactivation for gold mineralization in northeastern Hunan Province,South China[J].Journal of Structural Geology,145:104306.
Zhou Yueqiang, Xu Deru, Dong Guojun,et al,2019.Structural evolution of the Changsha-Pingjiang fault zone and its controlling on mineralization[J].Journal of East China University of Technology (Natural Science),42(3):201-208.
Zou S H, Zou F H, Ning J T,et al,2018.A stand-alone Co mineral deposit in northeastern Hunan Province,South China:Its timing,origin of ore fluids and metal Co,and geodynamic setting[J].Ore Geology Reviews,92:42-60.
陈倩,宋文磊,杨金昆,等,2021.矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J].矿床地质,40(2):345-368.
丰成友,张德全,党兴彦,2004.中国钴资源及其开发利用概况[J].矿床地质,93(1):93-100.
丰成友,张德全,佘宏全,等,2006.青海驼路沟钴(金)矿床形成的构造环境及钴富集成矿机制[J].矿床地质,25(5):544-561.
高林志,陈峻,丁孝忠,等,2011.湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄——对武陵运动的制约[J].地质通报,30(7):1001-1008.
蒋少涌,温汉捷,许成,等,2019.关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J].中国科学基金,33(2):112-118.
焦建刚,黄喜峰,袁海潮,等,2009.青海德尔尼铜(钴)矿床研究新进展[J].地球科学与环境学报,31(1):42-47.
宁钧陶,2002.湘东北原生钴矿成矿地质条件分析[J].湖南地质,21(3):192-200.
王登红,2019.关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J].地质学报,93(6):1189-1209.
王焰,钟宏,曹勇华,等,2020.我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J].科学通报,65(33):3825-3838.
王智琳,伍杨,许德如,等,2020.湘东北长沙—平江断裂带关键金属钴的赋存状态与成矿规律[J].黄金科学技术,28(6):779-785.
许德如,王力,李鹏春,等,2009.湘东北地区连云山花岗岩的成因及地球动力学暗示[J].岩石学报,25(5):1056-1078.
许德如,王智琳,聂逢君,等,2019.中国钴矿资源现状与关键科学问题[J].中国科学基金,33(2):125-132.
阎磊,范裕,刘一男,2021.安徽庐枞盆地龙桥铁矿床中钴的赋存状态和空间分布规律[J].岩石学报,37(9):2778-2796.
翟明国,吴福元,胡瑞忠,等,2019.战略性关键金属矿产资源:现状与问题[J].中国科学基金,33(2):106-111.
张爱奎,王建军,刘光莲,等,2021.青海省祁漫塔格地区主要成矿系列与成矿模式[J].矿物学报,41(1):1-22.
张文山,1991.湘东北长沙—平江断裂动力变质带的构造及地球化学特征[J].大地构造与成矿学,2:100-109.
赵俊兴,李光明,秦克章,等,2019.富含钴矿床研究进展与问题分析[J].科学通报,64(24):2484-2500.
周岳强,康博,2017.湖南省井冲铜钴多金属矿床成矿流体特征研究[J].矿物岩石地球化学通报,36(增):836.
周岳强,许德如,董国军,等,2019.湖南长沙—平江断裂带构造演化及其控矿作用[J].东华理工大学学报(自然科学版),42(3):201-208.
[1] 袁梓焜, 邵拥军, 刘清泉, 张毓策, 王智琳. 湘东北万古金矿田江东金矿床成因——流体包裹体和H-O同位素制约[J]. 黄金科学技术, 2024, 32(4): 559-578.
[2] 俞炳, 丁正江, 陈伟军, 李肖, 刘彩杰, 薛建玲, 曾庆栋, 范宏瑞, 吴金检, 张琪彬. 胶东西岭金矿床黄铁矿热电性特征及深部找矿意义[J]. 黄金科学技术, 2024, 32(2): 207-219.
[3] 王智琳,张凯,许德如,邹少浩,王宇非. 东昆仑驼路沟矿床中钴成矿过程的矿物学示踪[J]. 黄金科学技术, 2023, 31(2): 175-189.
[4] 寸小妮,薛玉山,王瑜亮,刘新伟. 陕西龙头沟金矿黄铁矿标型特征及其找矿意义[J]. 黄金科学技术, 2023, 31(1): 64-77.
[5] 张胜伟,邓腾,许德如,周岳强,董国军,李增华,马文,许可,海颜. 万古金矿中碳质物的成因及其与金成矿的关系[J]. 黄金科学技术, 2022, 30(6): 835-847.
[6] 万泰安,许德如,马文,张胜伟,王国建,卞玉冰,李博. 湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示[J]. 黄金科学技术, 2022, 30(5): 676-690.
[7] 陈振, 王翠芝, 吕古贤, 张宝林, 张启鹏, 魏竣滨, 史晓鸣. 柴胡栏子金矿黄铁矿的化学成分标型特征及其矿床学意义[J]. 黄金科学技术, 2022, 30(2): 165-178.
[8] 梁改忠,杨奎锋,范宏瑞,李兴辉. 东昆仑阿斯哈金矿胶状黄铁矿成因及其成矿意义[J]. 黄金科学技术, 2022, 30(1): 19-33.
[9] 王智琳,伍杨,许德如,邹少浩,董国军,彭尔柯,宁钧陶,康博. 湘东北长沙—平江断裂带关键金属钴的赋存状态与成矿规律[J]. 黄金科学技术, 2020, 28(6): 779-785.
[10] 温佳伟,史鹏亮,刘彦兵,张静,屈海浪,李元申,胡博心,缪广. 辽宁二道沟金矿床黄铁矿热电性特征及深部找矿预测[J]. 黄金科学技术, 2020, 28(6): 812-824.
[11] 高华, 谢玉华, 杨亮, 张哲, 柯新星, 刘晓敏, 罗建镖, 刘琦, 刘继顺, 王智琳, 孔华. 湖南通道地区金矿床中黄铁矿成分标型特征及对矿床成因的启示[J]. 黄金科学技术, 2020, 28(5): 712-726.
[12] 陈港, 陈懋弘, 马克忠, 葛锐, 郭申祥, 吴启强, 原其生. 广西贵港六梅金矿的成因类型及找矿意义[J]. 黄金科学技术, 2020, 28(4): 479-496.
[13] 张振, 宁生元, 徐增田. 胶东玲珑九曲金矿床载金黄铁矿矿物学特征及其深部找矿意义[J]. 黄金科学技术, 2020, 28(3): 328-336.
[14] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[15] 罗清威,王保国,义爱文,张克川,潘泽,张盛亚. 坦桑尼亚某绿岩带型金矿床中黄铁矿的标型特征及意义[J]. 黄金科学技术, 2019, 27(1): 15-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!