img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 580-591.doi: 10.11872/j.issn.1005-2518.2023.04.175

• 采选技术与矿山管理 • 上一篇    下一篇

应力波在非线性变形节理处传播规律的颗粒流模拟研究

王卫华1(),黄瑞新1(),罗杰2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.北京首都国际机场股份有限公司,北京 100621
  • 收稿日期:2022-11-16 修回日期:2023-05-04 出版日期:2023-08-30 发布日期:2023-09-20
  • 通讯作者: 黄瑞新 E-mail:50973993@qq.com;1468497338@qq.com
  • 作者简介:王卫华(1976-),男,湖南长沙人,教授,从事岩体动力学、爆破和安全工程研究工作。50973993@qq.com
  • 基金资助:
    国家重点研发计划项目“高寒及生态脆弱区大型矿山绿色开采技术”(2022YFC2903901)

Particle Flow Simulation Study on the Propagation Law of Stress Wave at Nonlinear Deformation Joints

Weihua WANG1(),Ruixin HUANG1(),Jie LUO2   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.Beijing Capital International Airport Co. , Ltd. , Beijing 100621, China
  • Received:2022-11-16 Revised:2023-05-04 Online:2023-08-30 Published:2023-09-20
  • Contact: Ruixin HUANG E-mail:50973993@qq.com;1468497338@qq.com

摘要:

岩体节理会对岩体中应力波的传播产生显著影响,研究节理岩体中应力波的传播规律对于爆破破岩、抗震与防爆等均具有重要实际意义和理论价值。运用FISH语言对光滑节理模型中的细观节理法向刚度进行修改,建立了具有非线性变形特性的岩石节理颗粒流模型,模拟分析了应力波在非线性变形节理处的传播特性,获得了节理刚度、应力波振幅和应力波频率对透反射系数的影响规律,并从细观角度揭示了应力波与节理相互作用的机理。结果表明:节理刚度对应力波透反射系数会产生较大影响,刚度越大透射系数越大,反射系数则越小。当节理刚度达到某一临界值后,透射系数增长缓慢并趋于稳定值;入射波幅值越大,透射系数越大,反射系数则越小;应力波透射系数随入射波频率的增加而减小,节理表现出高频滤波特性。

关键词: 非线性变形节理, 颗粒流模拟, 应力波传播, 透反射系数

Abstract:

Rock joints have significant influence on the propagation of stress waves in jointed rock mass.Study on the propagation law of stress waves in jointed rock mass is of great practical significance and theoretical value for rock blasting,earthquake engineering and explosion protection.The code was written by FISH language to modify the normal stiffness of micro-joints in the smooth joint model,and a particle flow model of rock joints with nonlinear deformation characteristics was established.The propagation characteristics of stress waves across single nonlinear deformed joints were analyzed,and the influence laws of joint stiffness,stress wave amplitude and stress wave frequency on the transmission and reflection coefficients were obtained.The interaction mechanism between stress wave and joint was revealed from microscopic perspective.The results show that the joint equivalent stiffness has a great influence on transmission and reflection coefficients of the stress wave.The larger the equivalent stiffness is,the larger the transmission coefficient is,and the smaller the reflection coefficient is.When the joint stiffness reaches a certain critical value,the transmission coefficient increases slowly and tends to a constant value.With the increase of the amplitude of incident wave,the transmission coefficient is increasing and reflection coefficient is decreasing.The stress wave transmission coefficient decreases with the increase of incident wave frequency,and the joint shows high frequency filtering.

Key words: nonlinear deformation joint, particle flow simulation, stress wave propagation, transmission and reflection coefficient

中图分类号: 

  • TU455

表 1

完整试样模型细观参数"

线性组及颗粒参数数值平行黏结组参数数值
E*/GPa30.00E˙*/GPa30.00
k*1.59k˙*1.59
μ0.50σ˙c/MPa68.10
rmin/mm0.25c˙/MPa68.10
rmax/mm0.42φ˙/(°)0
ρ/(kg·m-33 150

图1

试样破坏形态对比"

图2

室内试验与数值模拟应力—应变曲线对比"

图3

实现非线性变形节理闭合模型程序流程图"

图4

岩石节理颗粒流模型"

图5

节理法向闭合试验曲线"

图6

含节理岩杆的颗粒流模型"

表 2

等效刚度与透射系数"

细观初始刚度/(GPa·m-1模拟等效刚度/(GPa·m-1理论等效刚度/(GPa·m-1透射系数反射系数
10269.87257.080.5860.810
60365.21383.070.7330.681
100391.98433.150.7730.634
200642.59642.520.8750.483
300858.11840.450.9210.389
4001 161.031 027.120.9450.327
5001 481.771 172.770.9570.291

图7

细观初始刚度为100 GPa/m时的速度波形(a)与应力波形图(b)"

图8

细观初始刚度为200 GPa/m时的速度波形(a)与应力波形图(b)"

图9

细观初始刚度为300 GPa/m时的速度波形(a)与应力波形图(b)"

图10

不同等效刚度下透反射系数模拟与理论结果对比"

图11

入射波振幅为1 m/s时的速度波形(a)与应力波形图(b)"

图12

入射波振幅为5 m/s时的速度波形(a)与应力波形图(b)"

图13

不同振幅透反射系数变化曲线"

图14

节理面颗粒力链变化图"

图15

不同振幅节理面颗粒接触数目变化曲线"

图16

频率为5 kHz的速度波形(a)与应力波形图(b)"

图17

频率为10 kHz的速度波形(a)与应力波形图(b)"

图18

频率为20 kHz的速度波形(a)与应力波形图(b)"

图19

不同应力波频率下透射系数变化曲线"

图20

不同应力波频率下节理面颗粒接触数目变化曲线"

Bandis S C, Lumsden A C, Barton N R,1983.Fundamentals of rock joint deformation[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,20(6):249-268.
Cai J G, Zhao J,2000.Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses[J].International Journal of Rock Mechanics and Mining Sciences,37(4):661-682.
Crouch S L,1976.Solution of plane elasticity problems by the displacement discontinuity method:I.Infinite body solution[J].International Journal for Numerical Methods in Engineering,10(2):301-343.
Huang X, Qi S, Xia K,et al,2016.Propagation of high amplitude stress waves through a filled artificial joint:An experimental study[J].Journal of Applied Geophysics,130:1-7.
Li D, Han Z, Zhu Q,et al,2019.Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles[J].International Journal of Rock Mechanics and Mining Sciences,117:170.
Li J, Ma G,2010.Analysis of blast wave interaction with a rock joint[J].Rock Mechanics and Rock Engineering,43(6):777-787.
Li Nana, Li Jianchun, Li Haibo,et al,2015.SHPB experiment on influence of contact area of joints on propagation of stress wave[J].Chinese Journal of Rock Mechanics and Engineering,34(10):1994-2000.
Li X, Zou Y, Zhou Z,et al,2014.Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method[J].Rock Mechanics and Rock Engineering,47(5):1693-1709.
Li Y, Zhu Z, Li B,et al,2011.Study on the transmission and reflection of stress waves across joints[J].International Journal of Rock Mechanics and Mining Sciences,48(3):364-371.
Malama B, Kulatilake P H S W,2003.Models for normal fracture deformation under compressive loading[J].International Journal of Rock Mechanics and Mining Science,40(6):893-901.
Mehranpour M H, Kulatilake P H S W,2017.Improvements for the smooth joint contact model of the particle flow code and its applications[J].Computers and Geotechnics,87:163-177.
Miller R K,1977.An approximate method of analysis of the transmission of elastic waves through a frictional boundary[J].Journal of Applied Mechanics,44(4):652.
Pyrak-Nolte L J,1988.Seismic Visibility of Fractures[D].Berkeley:University of California.
Pyrak-Nolte L J,1996.Seismic response of fractures and the interrelations among fractures[J].International Journal of Rock Mechanics and Mining Sciences,33(8):787-802.
Resende R, Lamas L N, Lemos J V,et al,2010.Micromechanical modelling of stress waves in rock and rock fractures[J].Rock Mechanics and Rock Engineering,43(6):741-761.
Schoenberg M,1998.Elastic wave behavior across linear slip interfaces[J].Journal of the Acoustical Society of America,68(5):1516-1521.
Shen Mingrong, Chen Jianfeng,2015.Rock Mass Mechanics[M].2nd ed s.Shanghai:Tongji University Press.
Shi Chong, Zhang Qiang, Wang Shengnian,2018.Numerical Simulation Technology and Application with Particle Flow Code (PFC 5.0)[M].Beijing:China Architecture & Building Press.
Swan G,1983.Determination of stiffness and other joint properties from roughness measurements[J].Rock Mechanics and Rock Engineering,16(1):19-38.
Tang Yunkun,2021.Numerical Simulation of Stress Wave Propagation Characteristics in Filled Jointed Rock Masses by Particle Flow Discrete Element Method[D].Xi’an:Chang’an University.
Tian Zhennong, Li Shihai, Xiao Nan,et al,2008.Experimental studies and numerical simulation of stress wave propagation in one-dimensional rock mass[J].Chinese Journal of Rock Mechanics and Engineering,(Supp.1):2687-2693.
Wang Weihua, Li Xibing, Zuo Yujun,2006.Effects of single joint with nonlinear normal deformation on P-wave propagation[J].Chinese Journal of Rock Mechanics and Engineering,25(6):1218-1225.
Wang Weihua, Luo Jie, Liu Tian,et al,2021.Particle flow simulation on influence of joint roughness coefficient on stress wave propagation and specimens failure[J].Gold Science and Technology,29(2):208-217.
Xia Caichu, Sun Zongqi,2002.Joint Mechanics of Engineering Rock Mass[M].Shanghai:Tongji University Press.
Xu Peng,2017.Study on the Interaction Between Blast Wave and the Rock Mass with Structural Plane and the Induced Crack Propagation[D].Beijing:China University of Mining and Technology,Beijing.
Yan Xin,2021.Experimental Study on the Effect of Filling Medium Characteristics on Stress Wave Propagation in Jointed Rock Mass[D].Huainan:Anhui University of Science and Technology.
Zeng Chao, Zeng Yawu, Zhao Kai,2018.Numerical simulation of particle flow of stress wave propagation characteristics under the impacts of joint contact area and thickness[J].Journal of Water Resources and Architectural Engineering,16(1):134-139.
Zhao J, Cai J G,2001.Transmission of elastic P-waves across sin-gle fractures with a nonlinear normal deformational behavior[J].Rock Mechanics and Rock Engineering,34(1):3-22.
Zhou Z L, Zhao Y, Jiang Y H,et al,2017.Dynamic behavior of rock during its post failure stage in SHPB tests[J].Transactions of Nonferrous Metals Society of China,27(1):184-196.
李娜娜,李建春,李海波,等,2015.节理接触面对应力波传播影响的SHPB试验研究[J].岩石力学与工程学报,34(10):1994-2000.
沈明荣,陈建峰,2015.岩体力学[M].2版.上海:同济大学出版社.
石崇,张强,王盛年,2018.颗粒流(PFC 5.0)数值模拟技术及应用[M].北京:中国建筑工业出版社.
汤云坤,2021.充填节理岩体中应力波传播特性的颗粒流离散元数值模拟研究[D].西安:长安大学.
田振农,李世海,肖南,等,2008.应力波在一维节理岩体中传播规律的试验研究与数值模拟[J].岩石力学与工程学报,(增1):2687-2693.
王卫华,李夕兵,左宇军,2006.非线性法向变形节理对弹性纵波传播的影响[J].岩石力学与工程学报,25(6):1218-1225.
王卫华,罗杰,刘田,等,2021.节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J].黄金科学技术,29(2):208-217.
夏才初,孙宗颀,2002.工程岩体节理力学[M].上海:同济大学出版社.
许鹏,2017.爆炸应力波与含结构面岩体的相互作用及裂纹扩展研究[D].北京:中国矿业大学(北京).
颜鑫,2021.充填介质特性对节理岩体应力波传播影响试验研究[D].淮南:安徽理工大学.
曾超,曾亚武,赵凯,2018.节理接触面积和厚度对应力波传播特性影响的颗粒流数值模拟[J].水利与建筑工程学报,16(1):134-139.
[1] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[2] 汪海波, 魏国力, 宗琦, 徐颖. 节理发育岩体巷道掘进爆破数值模拟与应用研究[J]. 黄金科学技术, 2018, 26(3): 342-348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!