黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 613-623.doi: 10.11872/j.issn.1005-2518.2023.04.171
摘要:
为了准确高效地对边坡可靠度进行分析,在对420个边坡数据进行整理分析的基础上,建立了基于卷积神经网络(Convolutional Neural Network,CNN)与长短时记忆网络(Long Short-Term Memory,LSTM)的混合可靠度分析模型。首先,通过CNN模块提取数据特征;其次,构建LSTM模块并对边坡失效概率进行预测;然后,通过5因素4水平正交表L16对模型超参数进行优化;最后,通过2个算例进行对比验证。结果表明:(1)相比传统的蒙特卡洛法(MCS),CNN-LSTM模型预测失效概率相对误差仅为4.35%,而一次二阶矩法和响应面法相对误差为169.6%;在计算耗时方面,CNN-LSTM模型耗时45 s,MCS耗时119 s,CNN-LSTM模型效率比MCS提高了近2倍。(2)对比分析CNN、LSTM模型和多元线性回归模型(Multiple Linear Regression,MLR)等多种机器学习方法用于可靠度分析方面的计算性能,得出CNN-LSTM模型边坡失效概率预测相对误差远远小于CNN(104%)、LSTM(91.3%)和MLR(34.78%)的相对误差,且计算耗时最少;(3)算例验证了CNN-LSTM模型在边坡可靠度分析方面具有可行性和优越性。
中图分类号:
Ahmed R, Sreeram V, Mishra Y,et al,2020.A review and evaluation of the state of the art in PV solar power forecasting:Techniques and optimization[J].Renewable and Sustainable Energy Reviews,124:109792. | |
An Zhengming, Fang Zhengfeng, Zhou Xingtong,et al,2022.Reliability analysis of the slope stability of the soil disposal area in a mountainous highway construction[J].Soil Engineering and Foundation,36(4):626-629. | |
Bisharad D, Laskar R H,2019.Music genre recognition using convolutional recurrent neural network architecture[J].Expert Systems,36(4):e12429. | |
Chen K, Zhou Y, Dai F,2015.A LSTM-based method for stock returns prediction:A case study of China stock market[C]//IEEE International Conference on Big Data.Santa Clara:IEEE. | |
Chen T, Xu R, He Y,et al,2017.Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN[J].Expert Systems with Applications,72:221-230. | |
Das S K, Biswal R K, Sivakugan N,et al,2011.Classification of slopes and prediction of factor of safety using differential evolution neural networks[J].Environmental Earth Sciences,64(1):201-210. | |
Devesa R, Moldes A, Diaz-Fierros F,et al,2007.Extraction study of algal pigments in river bed sediments by applying factorial designs[J].Talanta,72(4):1546-1551. | |
Diederik P K, Jimmy B,2016.Adam:A method for stochastic optimization[C]//The 4th International Conference on Learning Representations(ICLR),2016.San Juan,Puerto Rico:International Machine Learning Society. | |
Duan Nan, Xue Huimin, Pan Yue,2002.A method for determining the number realizations in the calculation of reliability by Monte Carlo simulation method[J].Coal Mine Machinery,(3):13-14. | |
Graves A, Jaitly N, Mohamed A,2013.Hybrid speech recognition with deep bidirectional LSTM[C]//2013 IEEE Workshop on Automatic Speech Recognition and Understanding.Xi’an:IEEE: 273-278. | |
Huang Zhuotao,2022.Reliability Analysis of Heterogeneous Reservoir Slopes Using Machine Learning Algorithms[D].Nanchang:Nanchang University. | |
Ji Jian, Jiang Zhen, Yin Xin,et al,2022.Slope reliability analysis based on deep learning of digital images of random fields using CNN[J].Chinese Journal of Geotechnical Engineering,44(8):1463-1473. | |
Jiang Shuihua, Li Dianqing, Zhou Chuangbing,2013.Non-intrusive stochastic finite element method for slope reliability analysis based on Latin hypercube sampling[J].Chinese Journal of Geotechnical Engineering,35(Supp.2):70-76. | |
Liu C, Hou W, Liu D,2017.Foreign exchange rates forecasting with convolutional neural network[J].Neural Processing Letters,46(2):1095-1119. | |
Liu Y, Zhao Z, Zhang S,et al,2020.Identification of abnormal processes with spatial-temporal data using convolutional neural networks[J].Processes,8(1):73-91. | |
Niu Caoyuan, Wang Lehua, Xu Xiaoliang,2017.Study on impact from statistical characteristics of soil mass shear strength parameters on slope reliability[J].Water Resources and Hydropower Engineering,48(12):195-198,206. | |
Pedregosa F, Varoquaux G,et al,2011.Scikit-learn:Machine learning in python[J].Journal of Machine Learn Research,12:2825-2830. | |
Rawat W, Wang Z,2017.Deep convolutional neural networks for image classification:A comprehensive review[J].Neural Computer,29(9):2352-2449. | |
Rong Guangxu, Peng Yan, Tian Kai,2021.Application of ABAQUS finite element strength reduction program based on Python in slope stability analysis[J].Journal of North University of China(Natural Science Edition),42(4):332-339. | |
Shu Suxun, Gong Wenhui,2014.Fuzz random reliability analysis of slopes considering spatial variability of soil parameters[J].Huazhong University of Science and Technology(Natural Science Edition),42(9):93-97. | |
Suman S, Khan S Z, Das S K,et al,2016.Slope stability analysis using artificial intelligence techniques[J].Natural Hazards,84(2):727-748. | |
Sun X, Li C, Ren F,2016.Sentiment analysis for Chinese microblog based on deep neural networks with convolutional extension features[J].Neurocomputing,210:227-236. | |
Wan H B, Lan W G, Wong M K,et al,1994.Orthogonal array designs for the optimization of liquid chromatographic analysis of pesticides[J].Analytica Chimica Acta,289(3):371-380. | |
Wang Chaoyang, Li Limin, Wen Zongzhou,et al,2022.Dynamic prediction of landslide displacement based on time series and CNN-LSTM[J].Foreign Electronic Measurement Technology,41(3):1-8. | |
Wang Z Z, Goh S G,2021.Novel approach to efficient slope reliability analysis in spatially variable soils[J].Engineering Geology,281:105989. | |
Xie Xiudong, Fang Jianrui, Fan Wei,et al,2008.Research on analysis of slope stability based on reliability theory[J].Journal of Natural Disasters,17(2):110-115. | |
Xu Xiaoyuan, Wang Han, Yan Zheng,et al,2021.Overview of power system uncertainty and its solutions under energy transition[J].Automation of Electric Power Systems,45(16):2-13. | |
Xue X,2017.Prediction of slope stability based on hybrid PSO and LSSVM[J].Journal of Computing in Civil Engineering,31(1):04016041. | |
Yang L Q, Li P C, Fan S J,2008.The extraction of pigments from fresh Laminaria japonica[J].Chinese Journal of Oceanology and Limnology,26(2):193-196. | |
Zong Guangchang,2021.Study on Slope Displacement Prediction Based on Conv-LSTM[D].Shijiazhuang:Shijiazhuang Tiedao University. | |
安正明,方正峰,周兴彤,等,2022.山区高速公路弃渣场边坡稳定性可靠度分析[J].土工基础,36(4):626-629. | |
段楠,薛会民,潘越,2002.用蒙特卡洛法计算可靠度时模拟次数的选择[J].煤矿机械,(3):13-14. | |
黄卓涛,2022.基于机器学习算法的非均质水库边坡可靠度分析[D].南昌:南昌大学. | |
姬建,姜振,殷鑫,等,2022.边坡随机场数字图像特征CNN深度学习及可靠度分析[J].岩土工程学报,44(8):1463-1473. | |
蒋水华,李典庆,周创兵,2013.基于拉丁超立方抽样的边坡可靠度分析非侵入式随机有限元法[J].岩土工程学报,35(增2):70-76. | |
牛草原,王乐华,许晓亮,2017.土体抗剪强度参数统计特性对边坡可靠性影响研究[J].水利水电技术,48(12):195-198,206. | |
荣光旭,彭艳,田凯,2021.基于Python的ABAQUS有限元强度折减法程序在边坡稳定性分析中的应用[J].中北大学学报(自然科学版),42(4):332-339. | |
舒苏荀,龚文惠,2014.考虑参数空间变异性的边坡模糊随机可靠度分析[J].华中科技大学学报(自然科学版),42(9):93-97. | |
王朝阳,李丽敏,温宗周,等,2022.基于时间序列和CNN-LSTM的滑坡位移动态预测[J].国外电子测量技术,41(3):1-8. | |
谢秀栋,方建瑞,范炜,等,2008.基于可靠度理论的边坡稳定性分析研究[J].自然灾害学报,17(2):110-115. | |
徐潇源,王晗,严正,等,2021.能源转型背景下电力系统不确定性及应对方法综述[J].电力系统自动化,45(16):2-13. | |
宗广昌,2021.基于Conv-LSTM的边坡位移预测研究[D].石家庄:石家庄铁道大学. |
[1] | 刘伟, 闫晓宇, 刘庆朋, 孙欣然. 根土复合体增强矿区排土场边坡抗剪强度试验研究[J]. 黄金科学技术, 2024, 32(5): 871-881. |
[2] | 李启月, 肖宇航, 魏快快, 徐恒阳. 露天边坡体爆破振动特性研究[J]. 黄金科学技术, 2024, 32(3): 491-500. |
[3] | 程林. 高陡边坡在线监测系统在南泥湖露天钼矿中的应用[J]. 黄金科学技术, 2024, 32(2): 366-376. |
[4] | 海龙, 冯丽鑫, 谭世林, 吕勇博. 根土复合体加固露天矿山排土场边坡研究[J]. 黄金科学技术, 2023, 31(6): 911-918. |
[5] | 康恩胜,赵泽熙,孟海东. 基于EEMD-HW-PSO-ELM耦合模型的排土场边坡位移预测模型[J]. 黄金科学技术, 2022, 30(4): 594-602. |
[6] | 康恩胜, 孟海东, 赵自豪, 何滔. 基于物探技术的露天矿边坡失稳因素勘测研究[J]. 黄金科学技术, 2020, 28(3): 363-371. |
[7] | 周子龙,王亦凡,柯昌涛. “多米诺骨牌”破坏现象下的矿柱群系统可靠度评价[J]. 黄金科学技术, 2018, 26(6): 729-735. |
[8] | 徐金国,戴兴国,闫泽正. 基于D-S证据理论—正态隶属度的岩土边坡稳定性评价[J]. 黄金科学技术, 2018, 26(6): 780-787. |
[9] | 张炬,王李管,宋华强,任助理,毕林. 露天矿境界优化几何约束模型优化及其应用[J]. 黄金科学技术, 2018, 26(6): 795-802. |
[10] | 彭博. 库水位骤降耦合不同类型降雨泥岩边坡渗透稳定性数值模拟研究[J]. 黄金科学技术, 2018, 26(5): 647-655. |
[11] | 盛建龙, 翟明洋. 基于随机响应面法的金鸡岭岩质边坡可靠度分析及抽样方法对比[J]. 黄金科学技术, 2018, 26(3): 297-304. |
[12] | 杨明财, 盛建龙, 叶祖洋, 董舒. 基于FlAC3D的露天矿边坡稳定性及影响因素敏感性分析[J]. 黄金科学技术, 2018, 26(2): 179-186. |
[13] | 赵彬,李小贝,戴兴国,王新民,张德明. 基于变权重理论的边坡稳定性未确知分析[J]. 黄金科学技术, 2016, 24(6): 90-95. |
[14] | 刘科伟,曾庆田,刘栋. 边坡复杂地质结构三维可视化及数值模型构建[J]. 黄金科学技术, 2016, 24(2): 83-89. |
[15] | 陈建宏,李涛,江时雨. 基于动态权重的边坡稳定性评价方法[J]. 黄金科学技术, 2014, 22(4): 61-66. |
|