img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 613-623.doi: 10.11872/j.issn.1005-2518.2023.04.171

• 采选技术与矿山管理 • 上一篇    下一篇

CNN-LSTM模型在边坡可靠度分析中的应用

荣光旭1(),李宗洋2   

  1. 1.安徽工业经济职业技术学院地质与建筑工程学院,安徽 合肥 230051
    2.安徽省地勘局第一水文工程地质勘查院,安徽 蚌埠 233000
  • 收稿日期:2022-11-12 修回日期:2023-02-03 出版日期:2023-08-30 发布日期:2023-09-20
  • 作者简介:荣光旭(1986-),男,安徽桐城人,讲师,从事岩土结构稳定分析研究工作。506774520@qq.com
  • 基金资助:
    国家重点研发计划项目“强震区特大型泥石流防控标准化体系及示范应用”(2018YFC1505406);安徽省高校自然科学研究项目“深度学习在边坡稳定分析应用中的原理·方法·程序”(KJ2021A1536)

Application of CNN-LSTM Model in Slope Reliability Analysis

Guangxu RONG1(),Zongyang LI2   

  1. 1.School of Geology and Construction Engineering, Anhui Technical College of Industry and Economy, Hefei 230051, Anhui, China
    2.The First Institute of Hydrology and Engineering Geological Prospecting, Anhui Geological Prospecting Bureau, Bengbu 233000, Anhui, China
  • Received:2022-11-12 Revised:2023-02-03 Online:2023-08-30 Published:2023-09-20

摘要:

为了准确高效地对边坡可靠度进行分析,在对420个边坡数据进行整理分析的基础上,建立了基于卷积神经网络(Convolutional Neural Network,CNN)与长短时记忆网络(Long Short-Term Memory,LSTM)的混合可靠度分析模型。首先,通过CNN模块提取数据特征;其次,构建LSTM模块并对边坡失效概率进行预测;然后,通过5因素4水平正交表L16对模型超参数进行优化;最后,通过2个算例进行对比验证。结果表明:(1)相比传统的蒙特卡洛法(MCS),CNN-LSTM模型预测失效概率相对误差仅为4.35%,而一次二阶矩法和响应面法相对误差为169.6%;在计算耗时方面,CNN-LSTM模型耗时45 s,MCS耗时119 s,CNN-LSTM模型效率比MCS提高了近2倍。(2)对比分析CNN、LSTM模型和多元线性回归模型(Multiple Linear Regression,MLR)等多种机器学习方法用于可靠度分析方面的计算性能,得出CNN-LSTM模型边坡失效概率预测相对误差远远小于CNN(104%)、LSTM(91.3%)和MLR(34.78%)的相对误差,且计算耗时最少;(3)算例验证了CNN-LSTM模型在边坡可靠度分析方面具有可行性和优越性。

关键词: 边坡, 可靠度, 正交试验设计, 超参数, CNN-LSTM模型

Abstract:

When the traditional limit equilibrium method is used for slope reliability analysis,because of the performance function is implicit and the form is complicated,the iterative process of solving the function becomes complicated and the computational efficiency is low.Aiming at the above problems,a CNN-LSTM model method was proposed.The principle of this method is to first extract the data features by using convolutional neural network(CNN),and then predict the slope failure probability by using short and long time memory network(LSTM).On the basis of fully considering the value range of the CNN-LSTM model’s hyperparameters,the five-factor and four-level orthogonal test table was used to design the hyperparameters.Finally,the convolutional output dimension of the first layer and the second layer of the CNN network architecture in the CNN-LSTM model were determined to be 64 and 8 respectively.Dropout ratio is 0.5,the number of the first layer of the LSTM structure is 5 units and the number of the second layer of hidden layers is 20 units,respectively.The 420 slope sample data collected from central and western regions of China were used to train the model according to the ratio of 7∶3 between the training set and the verification set,and the optimal parameters of the CNN-LSTM model were obtained. Finally,Yanshanji landslide was taken as an example to illustrate the feasibility of the model method.The CNN-LSTM model was compared with Monte Carlo method(MCS),response surface method,single CNN,LSTM model and multiple linear regression model in terms of computational efficiency and failure probability prediction.The results show that:(1)When the MCS sampling times is 10 000,compared with the traditional MCS,although the CNN-LSTM model has a relative error of 4.35% in predicting the slope failure probability,in terms of computational efficiency,the CNN-LSTM model takes 45.28 s and the MCS takes 119 s,so the CNN-LSTM model increases the efficiency nearly 2 times.(2)When the single CNN model and LSTM model both adopt two-layer architecture,although the number of parameters of the CNN-LSTM model is not optimal,it has excellent performance in terms of calculation time and prediction accuracy of failure probability due to the small overfitting risk of the model.Compared with the multiple linear regression model,the relative error of CNN-LSTM prediction is 4.35%,and that of multiple linear regression is 34.78%.Through the above two points,the CNN-LSTM model can well complete the analysis of slope reliability,and avoid solving the implicit performance function,and the work efficiency is high.

Key words: slope, reliability, orthogonal test design, hyperparameter, CNN-LSTM model

中图分类号: 

  • TU43

图1

卷积神经网络模型示意图"

图2

LSTM循环网络“细胞”的框图circulation network"

图3

CNN-LSTM模型结构"

表1

超参数取值范围"

超参数取值范围
kernel1,2,3,4,5,6,7,8
filters8,16,32,64,256,512
hidden8,16,32,64,256
dropout0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9

表2

正交试验数据及RMSE结果"

方案编号ABCDERMSE
188550.30.2878
281610100.40.1366
383215150.50.1307
486420200.60.1150
516810150.60.1849
616165200.50.1266
716322050.40.1452
8166415100.30.1632
932815200.40.1594
10321620150.30.1438
1132325100.60.1460
1232641050.50.1512
1364820100.50.0837
1464161550.60.1648
15643210200.30.1653
1664645150.40.2099

图4

基于正交试验设计的CNN-LSTM模型计算流程"

表3

数据集部分数据"

样本编号h/mα/(°)μc/kPaφ/(°)γ/(kN·m-3p/mm稳定状态标签值
样本190.0180.2719.559.9123.049501
样本2136.5220.3221.3010.1020.031 2000
样本337.0250.3411.008.5020.501 0951
样本433.0150.3221.0010.0018.809951
样本570.0130.309.6110.4419.471 0200
?????????
样本41641.7120.2934.7213.3019.941 2701
样本41785.0180.3518.6015.1019.501 0671
样本418183.0400.2817.6020.3025.001 1100
样本41950.0130.3031.0015.7319.301 3201
样本42040.0120.3120.8014.5819.321 2600

表4

数据集相关指标描述"

项目h/mα/(°)μc/kPaφ/(°)

γ

/(kN·m-3

p/mm
最大值511.0053.000.42107.0045.0031.301 479.00
最小值16.668.000.270.000.0012.00876.00
平均值112.4334.510.3227.9423.0120.811 203.00
标准差129.2910.110.0622.5716.333.366.77

图5

CNN-LSTM模型训练损失函数值(MSE)"

表5

算例1不同方法可靠度分析结果"

分析方法失效概率/%相对误差/%
蒙特卡洛法(安正明等,2022)15.36-
本文方法15.400.26

图6

燕山集滑坡(a)燕山集滑坡位置;(b)现场图片"

表6

燕山集滑坡相关参数"

参数及单位参数值参数及单位参数值
h/m78c/kPa9.81
α/(°)13φ/(°)9.34
μ0.31p/mm1 191.3
γ/(kN·m-319.58

表7

CNN-LSTM与其他模型计算结果对比"

模型失效概率/%相对误差/%计算耗时/s
MCS0.0023-119
CNN-LSTM0.00244.3545
RSM0.0062169.6068
FORM0.0062169.60151

表8

各模型的参数及测试结果对比"

模型名称模型描述参数数量/个训练用时/s测试用时/s
CNN1filter3283 23245.212.23
CNN2filter64166 17647.532.26
LSTM150个单元74 20043.722.10
LSTM2100个单元168 40048.242.16
CNN-LSTM

CNN:第一层卷积核为64,第二层卷积核为8;

LSTM:第一层20个单元,第二层10个单元

76 71343.301.98

图7

各模型训练集/验证集损失值(MSE)"

表9

各模型预测性能及结果比较"

模型MAERMSE失效概率/%pf相对误差/%
MCS--0.0023-
CNN0.09490.10240.0047104.00
LSTM0.09260.09420.004491.30
CNN-LSTM0.07940.08370.00244.35
MLR0.08210.08860.003134.78
Ahmed R, Sreeram V, Mishra Y,et al,2020.A review and evaluation of the state of the art in PV solar power forecasting:Techniques and optimization[J].Renewable and Sustainable Energy Reviews,124:109792.
An Zhengming, Fang Zhengfeng, Zhou Xingtong,et al,2022.Reliability analysis of the slope stability of the soil disposal area in a mountainous highway construction[J].Soil Engineering and Foundation,36(4):626-629.
Bisharad D, Laskar R H,2019.Music genre recognition using convolutional recurrent neural network architecture[J].Expert Systems,36(4):e12429.
Chen K, Zhou Y, Dai F,2015.A LSTM-based method for stock returns prediction:A case study of China stock market[C]//IEEE International Conference on Big Data.Santa Clara:IEEE.
Chen T, Xu R, He Y,et al,2017.Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN[J].Expert Systems with Applications,72:221-230.
Das S K, Biswal R K, Sivakugan N,et al,2011.Classification of slopes and prediction of factor of safety using differential evolution neural networks[J].Environmental Earth Sciences,64(1):201-210.
Devesa R, Moldes A, Diaz-Fierros F,et al,2007.Extraction study of algal pigments in river bed sediments by applying factorial designs[J].Talanta,72(4):1546-1551.
Diederik P K, Jimmy B,2016.Adam:A method for stochastic optimization[C]//The 4th International Conference on Learning Representations(ICLR),2016.San Juan,Puerto Rico:International Machine Learning Society.
Duan Nan, Xue Huimin, Pan Yue,2002.A method for determining the number realizations in the calculation of reliability by Monte Carlo simulation method[J].Coal Mine Machinery,(3):13-14.
Graves A, Jaitly N, Mohamed A,2013.Hybrid speech recognition with deep bidirectional LSTM[C]//2013 IEEE Workshop on Automatic Speech Recognition and Understanding.Xi’an:IEEE: 273-278.
Huang Zhuotao,2022.Reliability Analysis of Heterogeneous Reservoir Slopes Using Machine Learning Algorithms[D].Nanchang:Nanchang University.
Ji Jian, Jiang Zhen, Yin Xin,et al,2022.Slope reliability analysis based on deep learning of digital images of random fields using CNN[J].Chinese Journal of Geotechnical Engineering,44(8):1463-1473.
Jiang Shuihua, Li Dianqing, Zhou Chuangbing,2013.Non-intrusive stochastic finite element method for slope reliability analysis based on Latin hypercube sampling[J].Chinese Journal of Geotechnical Engineering,35(Supp.2):70-76.
Liu C, Hou W, Liu D,2017.Foreign exchange rates forecasting with convolutional neural network[J].Neural Processing Letters,46(2):1095-1119.
Liu Y, Zhao Z, Zhang S,et al,2020.Identification of abnormal processes with spatial-temporal data using convolutional neural networks[J].Processes,8(1):73-91.
Niu Caoyuan, Wang Lehua, Xu Xiaoliang,2017.Study on impact from statistical characteristics of soil mass shear strength parameters on slope reliability[J].Water Resources and Hydropower Engineering,48(12):195-198,206.
Pedregosa F, Varoquaux G,et al,2011.Scikit-learn:Machine learning in python[J].Journal of Machine Learn Research,12:2825-2830.
Rawat W, Wang Z,2017.Deep convolutional neural networks for image classification:A comprehensive review[J].Neural Computer,29(9):2352-2449.
Rong Guangxu, Peng Yan, Tian Kai,2021.Application of ABAQUS finite element strength reduction program based on Python in slope stability analysis[J].Journal of North University of China(Natural Science Edition),42(4):332-339.
Shu Suxun, Gong Wenhui,2014.Fuzz random reliability analysis of slopes considering spatial variability of soil parameters[J].Huazhong University of Science and Technology(Natural Science Edition),42(9):93-97.
Suman S, Khan S Z, Das S K,et al,2016.Slope stability analysis using artificial intelligence techniques[J].Natural Hazards,84(2):727-748.
Sun X, Li C, Ren F,2016.Sentiment analysis for Chinese microblog based on deep neural networks with convolutional extension features[J].Neurocomputing,210:227-236.
Wan H B, Lan W G, Wong M K,et al,1994.Orthogonal array designs for the optimization of liquid chromatographic analysis of pesticides[J].Analytica Chimica Acta,289(3):371-380.
Wang Chaoyang, Li Limin, Wen Zongzhou,et al,2022.Dynamic prediction of landslide displacement based on time series and CNN-LSTM[J].Foreign Electronic Measurement Technology,41(3):1-8.
Wang Z Z, Goh S G,2021.Novel approach to efficient slope reliability analysis in spatially variable soils[J].Engineering Geology,281:105989.
Xie Xiudong, Fang Jianrui, Fan Wei,et al,2008.Research on analysis of slope stability based on reliability theory[J].Journal of Natural Disasters,17(2):110-115.
Xu Xiaoyuan, Wang Han, Yan Zheng,et al,2021.Overview of power system uncertainty and its solutions under energy transition[J].Automation of Electric Power Systems,45(16):2-13.
Xue X,2017.Prediction of slope stability based on hybrid PSO and LSSVM[J].Journal of Computing in Civil Engineering,31(1):04016041.
Yang L Q, Li P C, Fan S J,2008.The extraction of pigments from fresh Laminaria japonica[J].Chinese Journal of Oceanology and Limnology,26(2):193-196.
Zong Guangchang,2021.Study on Slope Displacement Prediction Based on Conv-LSTM[D].Shijiazhuang:Shijiazhuang Tiedao University.
安正明,方正峰,周兴彤,等,2022.山区高速公路弃渣场边坡稳定性可靠度分析[J].土工基础,36(4):626-629.
段楠,薛会民,潘越,2002.用蒙特卡洛法计算可靠度时模拟次数的选择[J].煤矿机械,(3):13-14.
黄卓涛,2022.基于机器学习算法的非均质水库边坡可靠度分析[D].南昌:南昌大学.
姬建,姜振,殷鑫,等,2022.边坡随机场数字图像特征CNN深度学习及可靠度分析[J].岩土工程学报,44(8):1463-1473.
蒋水华,李典庆,周创兵,2013.基于拉丁超立方抽样的边坡可靠度分析非侵入式随机有限元法[J].岩土工程学报,35(增2):70-76.
牛草原,王乐华,许晓亮,2017.土体抗剪强度参数统计特性对边坡可靠性影响研究[J].水利水电技术,48(12):195-198,206.
荣光旭,彭艳,田凯,2021.基于Python的ABAQUS有限元强度折减法程序在边坡稳定性分析中的应用[J].中北大学学报(自然科学版),42(4):332-339.
舒苏荀,龚文惠,2014.考虑参数空间变异性的边坡模糊随机可靠度分析[J].华中科技大学学报(自然科学版),42(9):93-97.
王朝阳,李丽敏,温宗周,等,2022.基于时间序列和CNN-LSTM的滑坡位移动态预测[J].国外电子测量技术,41(3):1-8.
谢秀栋,方建瑞,范炜,等,2008.基于可靠度理论的边坡稳定性分析研究[J].自然灾害学报,17(2):110-115.
徐潇源,王晗,严正,等,2021.能源转型背景下电力系统不确定性及应对方法综述[J].电力系统自动化,45(16):2-13.
宗广昌,2021.基于Conv-LSTM的边坡位移预测研究[D].石家庄:石家庄铁道大学.
[1] 刘伟, 闫晓宇, 刘庆朋, 孙欣然. 根土复合体增强矿区排土场边坡抗剪强度试验研究[J]. 黄金科学技术, 2024, 32(5): 871-881.
[2] 李启月, 肖宇航, 魏快快, 徐恒阳. 露天边坡体爆破振动特性研究[J]. 黄金科学技术, 2024, 32(3): 491-500.
[3] 程林. 高陡边坡在线监测系统在南泥湖露天钼矿中的应用[J]. 黄金科学技术, 2024, 32(2): 366-376.
[4] 海龙, 冯丽鑫, 谭世林, 吕勇博. 根土复合体加固露天矿山排土场边坡研究[J]. 黄金科学技术, 2023, 31(6): 911-918.
[5] 康恩胜,赵泽熙,孟海东. 基于EEMD-HW-PSO-ELM耦合模型的排土场边坡位移预测模型[J]. 黄金科学技术, 2022, 30(4): 594-602.
[6] 康恩胜, 孟海东, 赵自豪, 何滔. 基于物探技术的露天矿边坡失稳因素勘测研究[J]. 黄金科学技术, 2020, 28(3): 363-371.
[7] 周子龙,王亦凡,柯昌涛. “多米诺骨牌”破坏现象下的矿柱群系统可靠度评价[J]. 黄金科学技术, 2018, 26(6): 729-735.
[8] 徐金国,戴兴国,闫泽正. 基于D-S证据理论—正态隶属度的岩土边坡稳定性评价[J]. 黄金科学技术, 2018, 26(6): 780-787.
[9] 张炬,王李管,宋华强,任助理,毕林. 露天矿境界优化几何约束模型优化及其应用[J]. 黄金科学技术, 2018, 26(6): 795-802.
[10] 彭博. 库水位骤降耦合不同类型降雨泥岩边坡渗透稳定性数值模拟研究[J]. 黄金科学技术, 2018, 26(5): 647-655.
[11] 盛建龙, 翟明洋. 基于随机响应面法的金鸡岭岩质边坡可靠度分析及抽样方法对比[J]. 黄金科学技术, 2018, 26(3): 297-304.
[12] 杨明财, 盛建龙, 叶祖洋, 董舒. 基于FlAC3D的露天矿边坡稳定性及影响因素敏感性分析[J]. 黄金科学技术, 2018, 26(2): 179-186.
[13] 赵彬,李小贝,戴兴国,王新民,张德明. 基于变权重理论的边坡稳定性未确知分析[J]. 黄金科学技术, 2016, 24(6): 90-95.
[14] 刘科伟,曾庆田,刘栋. 边坡复杂地质结构三维可视化及数值模型构建[J]. 黄金科学技术, 2016, 24(2): 83-89.
[15] 陈建宏,李涛,江时雨. 基于动态权重的边坡稳定性评价方法[J]. 黄金科学技术, 2014, 22(4): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!