img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 669-679.doi: 10.11872/j.issn.1005-2518.2023.04.023

• 采选技术与矿山管理 • 上一篇    下一篇

基于启发式遗传算法的地下采场作业计划优化模型

黄爽1(),贾明涛1,鲁芳2()   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.湖南女子学院商学院,湖南 长沙 410004
  • 收稿日期:2023-02-08 修回日期:2023-04-27 出版日期:2023-08-30 发布日期:2023-09-20
  • 通讯作者: 鲁芳 E-mail:205512130@csu.edu.cn;345312045@qq.com
  • 作者简介:黄爽(1998-),男,湖南邵阳人,硕士研究生,从事矿山生产计划方面的研究工作。205512130@csu.edu.cn
  • 基金资助:
    国家“十三五”重点研发计划项目“金属矿山生产及作业装备智能管控与实时调度平台”(2019YFC0605304);2023年湖南省社会科学成果评审委员会一般课题“湖南省矿产资源资产负债表实证研究”(XSP2023JJC041)

Optimization Model of Underground Stope Working Plan Based on Heuristic Genetic Algorithm

Shuang HUANG1(),Mingtao JIA1,Fang LU2()   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.Department of Business, Hunan Women’s University, Changsha 410004, Hunan, China
  • Received:2023-02-08 Revised:2023-04-27 Online:2023-08-30 Published:2023-09-20
  • Contact: Fang LU E-mail:205512130@csu.edu.cn;345312045@qq.com

摘要:

针对地下矿山空间受限、设备资源有限以及生产任务重的特点,从相邻工序时间间隔最短及生产总时间最短的角度,构建了预控顶中深孔分段空场嗣后充填采矿法的生产计划优化模型,并采用启发式算法加速的遗传算法求解该模型。以赞比亚某铜矿的实际数据为例,对启发式遗传算法和普通遗传算法求出的染色体适应度进行比较分析。结果表明:相比普通遗传算法启发式遗传算法的求解收敛速度更快,经优化后矿山设备平均利用率为64.8%,平均出矿量为3 631.19 t/d,既能满足开采需求,又能有效缩短作业时间间隔,保证作业安全要求。该算法能够快速有效地解决井下多设备协调问题。

关键词: 地下金属矿山, 分段空场法, 嗣后充填, 多目标优化模型, 启发式算法, 遗传算法, 设备优化

Abstract:

With the rapid development of digital economy in the world,how to realize the rapid optimal allocation of underground mine production equipment has become the key to the continuous advancement and in-depth application of digital mine.In view of the characteristics of underground mines such as limited space,limited equipment resources,and large production tasks,an optimization model was constructed for production planning of the follow-up filling mining method in the open pit using pre-controlled roof medium-and deep-hole and sublevel open-stopping and subsequent filling method.The model aims at minimizing the interval time between adjacent processes and the total production time,and the above issue is solved using genetic algorithms.The genetic algorithms used for solving the problem include traditional genetic algorithms and optimized genetic algorithms.Taking the actual data of a copper mine test stope in Zambia as an example,it can be seen from the iterative results that all genetic algorithms can solve the model,and the optimized genetic algorithm converges faster than the ordinary genetic algorithm.The genetic algorithm accelerated by heuristic algorithm has the fastest convergence speed.Therefore,the heuristic genetic algorithm is used to solve the multi-objective optimization model and the results are visualized.After analyzing the solution results,it is found that the average utilization rate of equipment is only 49.16%,and the utilization rate of some equipment is low,so the number of equipment is optimized.After the number of equipment was optimized and solved again,the average utilization rate of mine equipment increased to 64.8%,basically meeting the requirements of the mine.In terms of production,the daily average ore output is 3 631.19 t/d,which meets the mining demand and effectively shorts the operation time interval to ensure the requirements of mining safety.In addition,copper and cobalt sunrise ore grade fluctuation is small,easy to concentrate.Therefore,the algorithm and model can quickly and effectively solve the problem of multi-equipment coordination in a copper mine in Zambia,improve production efficiency and safe mining.

Key words: underground metal mines, sublevel open-stoping method, subsequent filling, multi-objective optimization model, heuristic algorithm, fenetic algorithm, equipment optimization

中图分类号: 

  • TD85-9

图1

预控顶中深孔分段空场嗣后充填采矿法开采示意图1-中段运输平巷;2-中段运输横巷;3-斜坡道;4-分段联络道;5-分段巷;6-出矿川;7-扇形钻孔凿岩巷;8-充填回风支护巷;9-联络巷;10-充填回风井;11-溜井;12-扇形孔;13-锚索;14-充填体;O1-已开采矿带;O2-开采中矿带;O3-未开采矿带"

图2

预控顶中深孔分段空场嗣后充填采矿法工艺流程subsquent filling mining method"

表1

多目标优化模型参数"

参数参数含义
MAn盘区编号
On矿带编号
Sn采场编号
Pn工序编号
α设备工作能力折减系数,α[0.80,0.85]
β用于确定工作j开始工作时间的变量
STj工作j开始工作时间
OTj工作j作业时间,包含设备移动到采场工作面的时间和 设备在工作面工作的时间
Bw工作j作业期间包含爆破窗口的个数
CTj工作j作业结束时间
STmj设备m可以在工作j开始工作的最早时间
MSo矿带On开采状态,MSo?=0表示矿带On未开采,MSo?=1表示矿带On已开采
STo矿带On开始开采的时间,STo?=?STj,j=[?MAn,On,1,1]
CTo矿带On结束开采的时间,若矿带未开采,则CTo=0,若矿带已开采,则CTo=CTj,j=[?MAn,On,Sn,7]
TSo矿带On工序时间间隔

表2

多目标优化模型数据集"

数据集数据集含义
j工作编号集合,j=[?MAn,On,Sn,?Pn]
Jpi采场工序生产信息集合,包括工序工作量,位置坐标等
Mpi设备生产信息集合,包括设备生产能力,移动速度等
Jwi采场工序工作信息集合,包括工序使用设备的编号,开始工作时间,结束工作时间等
Mwi设备工作信息集合,包括设备开始工作时间,结束工作时间,工作地点等
Owi所有矿带工作信息集合,包括该矿带开采状态,开始开采时间,结束开采时间等

表3

多目标优化模型目标函数"

目标函数目标函数含义
C1染色体最大完工时间
C2染色体总工序时间间隔

图3

调度方案制定流程图"

图4

各方法最优染色体适应度变化图"

图5

不同方法最优染色体适应度对比图fitness of different methods"

表4

最优染色体可视化后第一个月各类设备利用率"

设备利用率/%
凿岩设备28.4
装药设备83.5
撬毛支护设备51.3
出矿设备26.4
充填设备56.2

表5

设备配置优化后第一个月各类设备利用率"

设备名称利用率/%
凿岩设备61.6
装药设备81.7
撬毛支护设备66.8
出矿设备57.9
充填设备56.0

图6

部分矿带工序甘特图"

图7

206矿带工序甘特图"

图8

第一个月每日出矿量"

图9

第一个月每日铜和钴出矿品位"

表6

第二天早班工作表"

工作编号工作开始时间工作结束时间工作设备工作出矿量/t工作铜出矿品位/%工作钴出矿品位/%
10501010:001:28凿岩台车20.000.000.00
50501010:007:37凿岩台车30.000.000.00
50101010:008:00凿岩台车10.000.000.00
11001020:008:00装药台车10.000.000.00
30401050:004:08铲运机1654.132.040.17
40301050:005:23铲运机2933.452.000.13
20601011:288:00凿岩台车20.000.000.00
50501027:378:00装药台车20.000.000.00
60101017:378:00凿岩台车30.000.000.00
Ahmadi M R, Shahabi R S,2018.Cutoff grade optimization in open pit mines using genetic algorithm[J].Resources Policy,55:184-191.
Anna G, Michael L, Hakan S,et al,2014.Development of a Markov model for production performance optimization.Application for semi-automatic and manual LHD machines in underground mines[J].International Journal of Mining Reclamation and Environment,28(5):342-355.
Åstrand M, Johansson M, Zanarini A,2020.Underground mine scheduling of mobile machines using Constraint Programming and Large Neighborhood Search[J].Computers and Operations Research,123:1-13.
Cai Min, Wang Yan, Ji Zhicheng,2021.Hybrid particle swarm optimization for solving fuzzy flexible job-shop scheduling problem[J].Journal of Nanjing University of Science and Technology,45(3):352-360.
Cheng R W, Gen M, Tsujimura Y,1999.A tutorial survey of job-shop scheduling problems using genetic algorithms:Part II.hybrid genetic search strategies[J].Computers &Industrial Engineering,37(1/2):51-55.
Feng Yangyang,2013.Optimization model of vehicle arrangement based on multi-objective programming[J].Electronic Design Engineering,21(10):21-23.
Fu Xuan, Huang Linqi, Chen Jiangzhan,et al,2022.Meeting the challenge of high geothermal ground temperature environment in deep mining—Research on geothermal ground temperature simulation platform of rock true triaxial testing machine[J].Gold Science and Technology,30(1):72-84.
Hou J, Li G Q, Wang H,et al,2020.Genetic algorithm to simultaneously optimise stope sequencing and equipment dispatching in underground short-term mine planning under time uncertainty[J].International Journal of Mining,Reclamation and Environment,34(5):307-325.
Khan A, Niemann-Delius C,2015.Application of particle swarm optimization to the open pit mine scheduling problem[C]// Proceedings of the 12th International Symposium Continuous Surface Mining-Aachen 2014.Berlin:Springer International Publishing.
Li Guoqing, Hou Jie, Hu Nailian,2018.Integrated optimization model for production and equipment dispatching in underground mines[J].Chinese Journal of Engineering,40(9):1050-1057.
Li Guoqing, Li Bao, Hu Nailian,et al,2017.Optimization model of mining operation scheduling for underground metal mines[J].Chinese Journal of Engineering,39(3):342-348.
Li J Q, Duan P Y, Cao J D,et al,2018.A hybrid Pareto-based tabu search for the distributed flexible job shop scheduling problem with E/T criteria[J].IEEE Access,6:58883-58897.
Li Ning, Ye Haiwang, Wu Hao,et al,2017.Ore blending for mine production based on hybrid particle swarm optimization algorithm[J].Mining and Metallurgical Engineering,37(5):126-130.
Li Rui, Hu Nailian, Li Guoqing,et al,2017.Optimization of mining operation plan based on multi-objective 0-1 programming[J].Metal Mine,46(2):102-108.
Liu Xiaohui, Zeng Xiantao, Tan Wei,2019.Optimization and application of pre-controlling roof and sublevel open-stope mining with subsequent filling method[J].China Mining Magazine,28(3):87-92.
Matamoros M E V, Dimitrakopoulos R,2016.Stochastic short-term mine production schedule accounting for fleet allocation,operational considerations and blending restrictions[J].European Journal of Operational Research,255(3):911-921.
Pathak P, Samanta B,2022.A genetic algorithm-based approach for optimizing short-term production schedules of multi-mine mineral value chains[J].Mining Metallurgy and Exploration,39(4):1403-1427.
Ren Haibing, Wang Sihua,2005.Automatic adjusting method of plan of mining-excavation relay in the mine[J].Journal of Liaoning Technical University,(6):811-814.
Song Jiewei, Rong Gang,2003.Study of uncertainty problem in vehicles scheduling[J].Journal of Zhejiang University(Engineering Science),(2):117-122.
Sun Xiaoyu, Deng Penghong, Zhao Ming,2016.Integrated optimization model of multi-period open-pit mine production scheduling[J].Journal of Northeastern University(Natural Science),37(10):1460-1464.
Toledo A A T, Marques D M, Costa J F C L,et al,2022.Short-term mine scheduling targeting stationary grades[J].REM-International Engineering Journal,75(1):73-82.
Upadhyay S P, Askari-Nasab H,2018.Simulation and optimization approach for uncertainty- based short- term planning in open pit mines[J].International Journal of Mining Science and Technology,28(2):153-166.
Wang Ling, Zheng Dazhong,2001.Advances in job shop scheduling based on genetic algorithm[J].Control and Decision,(Supp.1):641-646.
Wang Shaofeng, Li Xibing,2021.Cutting characteristic and non-explosive mechanized rock-breakage practice of deep hard rock[J].Gold Science and Technology,29(5):629-636.
Wu Huijiang, Li Jianxiang,2005.Open-pit mine product planning:The current problems and strategies[J].Metal Mine,40(4):4-6,42.
Yu Jian, Huang Xingyi, Wu Dongxu,et al,2005.Theory and technology on trackless mining of gentle dip multi-strata ores of medium size[J].Journal of Central South University(Science and Technology),(6):1107-1111.
Yu S, Ding C, Zhu K,2011.A hybrid GA-TS algorithm for open vehicle routing optimization of coal mines material[J].Expert Systems with Applications,38(8):10568-10573.
傅璇,黄麟淇,陈江湛,等,2022.迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J].黄金科学技术,30(1):72-84.
李国清,侯杰,胡乃联,2018.地下矿山生产接续与设备调度集成优化模型[J].工程科学学报,40(9):1050-1057.
李国清,李宝,胡乃联,等,2017.地下金属矿山采掘作业计划优化模型[J].工程科学学报,39(3):342-348.
李宁,叶海旺,吴浩,等,2017.基于混合粒子群优化算法的矿山生产配矿[J].矿冶工程,37(5):126-130.
李瑞,胡乃联,李国清,等,2017.基于多目标0-1规划的采掘作业计划优化[J].金属矿山,46(2):102-108.
刘晓辉,曾宪涛,谭伟,2019.预控顶分段嗣后充填采矿法的优化及应用实践[J].中国矿业,28(3):87-92.
任海兵,王思华,2005.矿井采掘接替计划自动调整方法[J].辽宁工程技术大学学报,(6):811-814.
宋洁蔚,荣冈,2003.运输调度中不确定性问题的研究[J].浙江大学学报(工学版),(2):117-122.
孙效玉,邓鹏宏,赵明,2016.多时段露天矿生产计划整体优化模型[J].东北大学学报(自然科学版),37(10):1460-1464.
王凌,郑大钟,2001.基于遗传算法的Job Shop调度研究进展[J].控制与决策,(增1):641-646.
王少锋,李夕兵,2021.深部硬岩可切割性及非爆机械化破岩实践[J].黄金科学技术,29(5):629-636.
吴会江,李建祥,2005.露天矿生产计划的现状、问题与对策[J].金属矿山,40(4):4-6,42.
余健,黄兴益,吴东旭,等,2005.缓倾斜中厚矿体机械化采矿理论与技术[J].中南大学学报(自然科学版),(6):1107-1111.
[1] 张泽群, 钟文, 杨华泽, 周伶杰, 林圣杰, 毛基腾, 赵奎. 分段空场嗣后充填法人工矿柱多源信息融合稳定性评价模型[J]. 黄金科学技术, 2024, 32(5): 894-904.
[2] 郭良银,蒋万飞,宋召法,刘晓光,张金超. 新城金矿阶段空场嗣后充填法开采大直径深孔切槽爆破方法[J]. 黄金科学技术, 2022, 30(4): 585-593.
[3] 谢饶青, 陈建宏, 肖文丰. 基于NPCA-GA-BP神经网络的采场稳定性预测方法[J]. 黄金科学技术, 2022, 30(2): 272-281.
[4] 赵兴东,曾楠,陈玉民,魏慧,王成龙,侯成录,杜云龙,范纯超. 三山岛金矿井下无人开采区域中深孔落矿嗣后充填连续采矿工艺设计[J]. 黄金科学技术, 2021, 29(2): 200-207.
[5] 公凡波,毕林. 露天矿电铲铲装移动轨迹规划研究[J]. 黄金科学技术, 2021, 29(1): 43-52.
[6] 王猛, 史秀志, 张舒. 面向产能优化的地下金属矿山安全保障条件评价研究[J]. 黄金科学技术, 2020, 28(5): 753-760.
[7] 许瑞, 侯奎奎, 王玺, 刘兴全, 李夕兵. 基于核主成分分析与SVM的岩爆烈度组合预测模型[J]. 黄金科学技术, 2020, 28(4): 575-584.
[8] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[9] 代转,罗周全,秦亚光,文磊,丁春胜,董喆喆. 地下金属矿山广义安全管理模型构建及评价[J]. 黄金科学技术, 2019, 27(6): 920-930.
[10] 肖文丰,陈建宏,陈毅,王喜梅. 基于神经网络与遗传算法的多目标充填料浆配比优化[J]. 黄金科学技术, 2019, 27(4): 581-588.
[11] 刘志祥,刘奕然,兰明. 矿井涌水量预测的PCA-GA-ELM模型及应用[J]. 黄金科学技术, 2017, 25(1): 61-67.
[12] 尹土兵,王品,张鸣鲁. 基于AHP及模糊综合评判的地下金属矿山安全分析与评价[J]. 黄金科学技术, 2015, 23(3): 60-66.
[13] 叶培. 一种新的量子遗传算法在阳山金矿GPS卫星信号去噪处理中的应用探讨[J]. 黄金科学技术, 2015, 23(2): 83-87.
[14] 于常先,何顺斌,杨尚欢,黄维. 中深孔分段落矿嗣后充填采矿实践[J]. 黄金科学技术, 2014, 22(4): 85-88.
[15] 孙旭. 格尔珂金矿资源综合开发利用方案[J]. J4, 2003, 11(5): 28-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!