img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 689-697.doi: 10.11872/j.issn.1005-2518.2023.04.064

• 采选技术与矿山管理 • 上一篇    下一篇

贵州某卡林型金矿精锐微泡浮选生产实践

彭科淇(),周瑞仙   

  1. 贵州紫金矿业股份有限公司,贵州 贞丰 562200
  • 收稿日期:2022-05-10 修回日期:2022-06-12 出版日期:2023-08-30 发布日期:2023-09-20
  • 作者简介:彭科淇(1989-),男,贵州黔南人,助理工程师,从事矿山选冶技术与生产管理工作。634333106@qq.com

Production Practice of JRF Micro-bubble Flotation on Carlin Types Gold Ore in Guizhou

Keqi PENG(),Ruixian ZHOU   

  1. Guizhou Zijin Mining Co. ,Ltd. ,Zhenfeng 562200,Guizhou,China
  • Received:2022-05-10 Revised:2022-06-12 Online:2023-08-30 Published:2023-09-20

摘要:

贵州某卡林型金矿原矿金品位较低,有用矿物与脉石矿物嵌布粒度细,有害元素As和C含量较高,常规细磨浮选工艺金回收率仅为80.54%,尾矿金品位为0.97×10-6,浮选尾矿金损失较为严重。为了提高金精矿回收率,降低浮选尾矿金品位,开展了工艺矿物学及精锐微泡浮选工业试验研究。结果表明:常规细磨浮选尾矿中损失的金主要以-38 μm粒级的贫连生体形式损失,且金含量较高。常规细磨浮选无法捕收的微细颗粒矿物,是造成浮选尾矿金损失的主要原因。采用精锐微泡浮选技术对扫选Ⅳ的尾矿进行再选试验,结果表明:精锐微泡浮选对尾矿中-38 μm粒级的微细颗粒矿物有显著捕收效果,工艺优化后,金累计回收率为82.39%,提高了1.85个百分点,尾矿金品位为0.88×10-6,降低了0.09×10-6,浮选指标逐渐转好,提升了企业经济效益。

关键词: 金, 工艺矿物学, 精锐微泡浮选, 浮选尾矿, 回收率, 微细颗粒

Abstract:

The raw ore of a carlin gold mine in Guizhou has low gold grade,fine disseminated granularity of valuable minerals and gangue minerals,and high content of harmful elements arsenic and carbon.The recovery rate of conventional fine grinding flotation process is only 80.54% and the gold grade of tailing is 0.97×10-6,the loss of flotation tailing gold is relatively serious.In order to improve the recovery rate of gold concentrate and reduce the gold grade of flotation tailing,the process mineralogy study of secondary grinding classification overflow and flotation tailing was carried out to find out the gold distribution and loss.The results show that the gold lost in conventional fine grinding flotation tailing is mainly sulfide wrapped gold,which is mainly lost in the poor coenobium of -38 μm grade,accounting for 60.70%,and the lost sulfide gold content is high.Secondly,there are a small amount of dissociated monomer and a small amount of fusant,which are not fully recovered due to the fine particle size,and also lost in the tailings.The main cause of the loss of gold in flotation tailing is that the fine particle minerals cannot be caught by conventional fine grinding flotation.Combined with the site production situation,the JRF micro-bubble flotation was applied to rough selection Ⅰ operation and scavenge Ⅳ tailing for reselection test.The test results show that JRF micro-bubble flotation has a significant catching effect on some fine particle minerals in tailing,which can further strengthen the capture of sulfide poor coenobium of -38 μm grade and a amount dissociation monomer of -20 μm grade in conventional fine grinding flotation scavenge Ⅳ tailing,and reduce the loss of gold in flotation tailing.After the technical transformation,the cumulative recovery rate of gold is 82.39% and the tailing grade is 0.88×10-6.The recovery rate increased by 1.85 percentage points,and the tailing grade decreased by 0.09×10-6,and the flotation index was gradually improved,which increased the economic benefits of enterprises.

Key words: gold, process mineralogy, JRF micro-bubble flotation, flotation tailing, recovery, fine particles

中图分类号: 

  • TD923

表1

原矿多元素分析结果"

化学成分含量化学成分含量
Au3.98Pb0.01
Ag<0.01Zn0.01
TS5.80CaO7.49
S2-5.12MgO2.63
As0.41Al2O34.69
C6.03SiO237.03
C有机1.53TiO20.82
Fe8.22Hg0.001

表2

原矿金物相分析结果"

相别含量/(×10-6占比/%
合计3.990100.00
裸露金0.1654.14
碳酸盐和氧化物包裹金0.0581.44
硫化物和碳质包裹金3.53088.53
硅酸盐及其他包裹金0.2355.89

表3

原矿矿物组成及含量分析结果"

矿物名称含量矿物名称含量
黄铁矿9.63铁白云石31.05
毒砂0.34白云石5.70
磁黄铁矿0.01方解石9.19
黄铜矿0.01菱铁矿0.19
闪锌矿0.01石英30.78
方铅矿<0.01绢云母9.34
褐铁矿0.08绿泥石0.14
铁矾0.02锐钛矿1.52
重晶石0.05有机碳1.34
磷灰石0.26其他矿物0.34

图1

浮选工艺流程"

表4

二段磨矿分级溢流尾矿中硫化物的粒度—解离连生情况"

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物及碳酸盐与硅酸盐及碳质0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.003.0418.6918.0629.1435.9315.890.98
x=10078.27--13.1122.6229.3912.470.68
80≤x<1005.220.644.580.020.342.342.320.20
50≤x<805.070.694.380.282.141.910.640.10
x<5011.441.719.734.654.042.290.460.00

表5

二段磨矿分级溢流尾矿粒度组成及金金属分布"

粒级/mm产率/%

金品位

/(×10-6

金金属分布率/%
个别负累积
合计100.00-4.02100.00
+0.07410.21100.002.396.07
-0.074+0.04513.7689.793.0110.29
-0.045+0.0386.9976.044.047.02
-0.038+0.0256.2569.044.807.46
-0.025+0.01018.8962.797.4735.10
-0.01043.9043.903.1234.06

表6

浮选尾矿中硫化物的粒度—解离连生情况"

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物与碳酸盐与硅酸盐0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.006.1612.4859.4642.7935.3117.633.890.38
x=10021.90---12.816.421.730.940.00
80≤x<1007.613.220.364.031.023.562.570.460.00
50≤x<809.792.540.616.642.023.483.040.870.38
x<5060.700.4011.5148.7926.9421.8510.291.620.00

表7

浮选尾矿粒度组成及金金属分布"

粒级/mm

个别产率

/%

负累积产率

/%

金品位

/(×10-6

金金属分布率

/%

合计100.00-1.28100.00
+0.07411.81100.001.6615.26
-0.074+0.04514.8688.191.8721.63
-0.045+0.0385.6073.331.787.76
-0.038+0.0257.0367.731.659.03
-0.025+0.01019.5860.701.5122.95
-0.01041.1241.120.7323.37

图2

浮选尾矿中微细贫连生的黄铁矿"

图3

精锐微泡浮选机设备结构及原理示意图"

图4

粗选Ⅰ作业工业试验对比流程(精锐微泡浮选与常规浮选)"

表8

浮选设备型号及规格"

作业名称设备型号数量/台容积/m3
粗选BF-10710
扫选BF-101810
精选BF-454
微泡浮选JRF3217/4S110

表9

粗选Ⅰ作业中精锐微泡浮选与常规浮选的工业试验结果对比"

项目金品位/(×10-6产率/%金回收率/%
原矿精矿尾矿
精锐微泡浮选4.7118.861.1320.2080.89
常规细磨浮选4.2619.241.0717.5679.33

图5

精锐微泡浮选粗选Ⅰ精矿产品粒度分布曲线"

图6

常规浮选粗选Ⅰ精矿产品粒度分布曲线"

图7

扫Ⅳ尾矿再选工业试验对比流程(精锐微泡浮选与常规浮选)"

图8

技改前后工业试验指标对比"

表10

精锐微泡浮选精矿中硫化物的粒度—解离连生情况"

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物和碳酸盐与硅酸盐0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.0010.7565.0733.5332.7123.329.660.78
x=10024.19--13.767.061.981.240.15
80≤x<1005.411.204.220.070.731.972.500.14
50≤x<807.231.295.940.622.103.001.250.26
x<5063.178.2654.9119.0822.8216.374.670.23

表11

精锐微泡浮选精矿粒度组成及金属分布"

粒级/mm

个别产率

/%

负累积产率

/%

金品位

/(×10-6

金金属分布率

/%

合计100.00-4.48100.00
+0.1063.35100.001.851.38
-0.106+0.07422.9396.653.6418.63
-0.074+0.04521.3873.724.6722.29
-0.045+0.0388.4352.344.718.86
-0.038+0.0255.2243.914.785.57
-0.02538.6938.695.0143.26

图9

精锐微泡浮选精矿中的微细贫连生体黄铁矿"

Ban Jinpeng, Chang Limin, Dai Yunpeng,et al,2019.Challenges and countermeasures for water kicks in tunnel drilling at Shuiyindong gold mine in southwest Guizhou[J].Exploration Engineering(Rock and Soil Drilling and Excavation Engineering),46(11):14-20.
Cao Yijun, Yan Xiaokang, Wang Lijun,et al,2017.The micro-turbulence intensification on the fine minerals flotation[J].Conservation and Utilization of Mineral Resources,(2):113-118.
Chang Zheng, Xiong Xin, Sun Xiaohua,2021.Experimental research on the mineral processing of refractory microfine disseminated arsenic and carbonaceous gold ore from Qinghai[J].Gold,42(1):55-58,63.
Chen Xiaodong,2021.Principle and practice of enhanced flotation performance of fine particles by JRF micro-bubble flotation machine[J].Nonferrous Metals(Mineral Processing Section),(1):112-116.
Chen Zhongxin,1997.Flotation machine[J].Foreign Mineralation Express,(13):11-18.
Cui Lifeng, Tian Shuguo, He Meili,2018.Experimental study on mineral processing of fine-grained and disseminated refractory carbon gold ore from Shuiyindong of Guizhou[J].Comprehensive Utilization of Minerals,(4):37-41.
Cui Yiqi, Chen Hailiang, Dong Peng,et al,2014.Research on the status of pretreatment techniques for carlin-type gold deposits[J].Gold,35(10):61-63.
Gui Q H, Wang S X, Zhang L B,2021.The mechanism of ultrasound oxidation effect on the pyrite for refractory gold ore pretreatment[J].Arabian Journal of Chemistry,14(4):103045.
Lee S, Sadri F, Ghahreman A,et al,2022.Enhanced gold recovery from alkaline pressure oxidized refractory gold ore after its mechanical activation followed by thiosulfate leaching[J].Journal of Sustainable Metallurgy,8(1):186-196.
Li Guo, Pi Qiaohui, Wei Chaowen,et al,2019.Occurrence of gold in Shuiyindong gold deposit,Guizhou[J].Journal of Guilin University of Technology,39(4):817-829.
Li X X, Zhu X Q, Ling Y T,et al,2017.Mineralogy and geochemistry characteristics and genetic implications for stratabound carlin-type gold deposits in southwest Guizhou,China[J].Journal of Nanoscience and Nanotechnology,17(9):6307-6317.
Liu Keyong,2016.Problems and suggestions existing in gold mine development in China[J].Modern State-Owned Enterprise Research,(24):202-203.
Liu Yuan, Hou Zhongjian, Li Dingwu,2013.Present situation of research into carlin-type gold deposits in China[J].Sichuan Geological Journal,33(2):132-136.
Man Lumei,2021.Research and exploration on the combined technology of beneficiation and metallurgy for complex carlin type gold deposits[J].China Nonferrous Metals Metallurgy,50(3):63-69.
Ng S W, Yang Y, Su X Z,et al,2022.Characterization of preg-robbing carbonaceous minerals from the Shuiyindong carlin-type gold deposit via spectroscopic techniques[J].Mining,Metallurgy and Exploration,39:169-188.
Qi Jian, Pan Chenglong, Tian Huimin,2021.Development trend and policy suggestions of China’s gold industry [J].China Market,(15):1-8.
Salazar-Campoy M M, Valenzuela-García J L, Quiróz-Castillo L S,et al,2020.Comparative study of gold extraction from refractory pyritic ores through conventional leaching and simultaneous pressure leaching/oxidation[J].Mining Engineering,72(8):45-46.
Sun Zhongmei, Sun Chunbao, Gan Yonggang,2014.Study on flotation technology on carlin types gold ore in Guizhou[J].Comprehensive Utilization of Minerals,(5):34-37.
Wei Longming,1996.General characters of gold mineral in carlin-type gold deposit,China [J].Gold Geology,2(3):15-17.
Wu Tianjiao, Cao Huan, Niu Fangyin,et al,2021.Study on gold extraction from a carbon-bearing fine-grained refractory gold ore by flotation process[J].Gold Science and Technology,29(5):761-770.
Xu Tao, Su Shuyun, Liao Zhanpi,et al,2013.Study on modes of occurrence of gold for Shuiyindong gold bearing pyrite in Guizhou Province[J].Gold Science and Technology,21(5):86-92.
Xu Xiaoyang,2020.Research on extracting gold from refractory gold ore by POX-cyanidation technique [J].Gold,41(4):50-53.
Yang Bo, Tong Xiong, Xie Xian,et al,2020.Study on the gold recovery from flotation tailings of a refractory gold ores in Gansu Province by a process combining mineral processing and metallurgy[J].Gold Science and Technology,28(2):285-292.
班金彭,畅利民,代云鹏,等,2019.黔西南水银洞金矿涌水坑道钻探难点与对策[J].探矿工程(岩土钻掘工程),46(11):14-20.
曹亦俊,闫小康,王利军,等,2017.微细粒浮选的微观湍流强化[J].矿产保护与利用,(2):113-118.
常征,熊馨,孙晓华,2021.青海某含砷含碳微细浸染型难处理金矿石选矿试验研究[J].黄金,42(1):55-58,63.
陈晓东,2021.精锐微泡浮选机强化微细粒浮选的机理与实践[J].有色金属(选矿部分),(1):112-116.
陈忠信,1997.浮选机[J].国外选矿快报,(13):11-18.
崔立凤,田树国,何美丽,2018.贵州水银洞含炭细粒浸染型难选冶金矿石选矿试验研究[J].矿产综合利用,(4):37-41.
崔毅琦,陈海亮,董鹏,等,2014.卡林型金矿预处理技术研究现状[J].黄金,35(10):61-63.
李国,皮桥辉,韦朝文,等,2019.贵州水银洞金矿金的赋存状态[J].桂林理工大学学报,39(4):817-829.
刘科勇,2016.我国金矿开发存在的问题及建议[J].现代国企研究,(24):202-203.
刘源,侯中健,李定武,2013.我国卡林型金矿研究现状[J].四川地质学报,33(2):132-136.
满露梅,2021.复杂卡林型金矿选冶联合工艺的研究与探索[J].中国有色冶金,50(3):63-69.
齐剑,潘成龙,田惠敏,2021.我国黄金行业发展趋势及政策建议[J].中国市场,(15):1-8.
孙忠梅,孙春宝,甘永刚,2014.贵州某卡林型金矿浮选工艺研究[J].矿产综合利用,(5):34-37.
韦龙明,1996.中国卡林型金矿床金矿物的一般特征[J].黄金地质,2(3):15-17.
吴天骄,曹欢,牛芳银,等,2021.某含碳微细粒难处理金矿浮选提金工艺研究[J].黄金科学技术,29(5):761-770.
许涛,苏妤芸,廖占丕,等,2013.贵州水银洞含金黄铁矿中金的赋存形式探讨[J].黄金科学技术,21(5):86-92.
许晓阳,2020.难处理金矿石加压氧化——氰化提金技术研究[J].黄金,41(4):50-53.
杨波,童雄,谢贤,等,2020.选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究[J].黄金科学技术,28(2):285-292.
[1] 董磊磊, 白鑫, 宋明春. 胶东中生代岩浆岩金等元素组成及其对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 768-780.
[2] 胡文萱, 宋明春, 李杰, 董磊磊, 赵润芊, 张亮亮, 李健, 白天慧. 胶东金矿成矿物质来源:来自与金成矿有关地质单元金含量的约束[J]. 黄金科学技术, 2024, 32(5): 781-797.
[3] 周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829.
[4] 唐名鹰, 战洪雷, 陈建, 朱伟, 类维东, 王欣, 丁正江, 李双飞, 牟征. 山东五莲七宝山铅锌多金属矿床硫化物微量元素分布特征及地质意义[J]. 黄金科学技术, 2024, 32(5): 830-846.
[5] 郭忠磊, 崔嵛, 王春龙. 局部制冷降温技术在井下长距离掘进中的应用[J]. 黄金科学技术, 2024, 32(5): 916-925.
[6] 任珩, 李沛霖, 李金潞. 基于黄金尾矿处理与综合利用研究的文献计量分析[J]. 黄金科学技术, 2024, 32(5): 939-948.
[7] 袁梓焜, 邵拥军, 刘清泉, 张毓策, 王智琳. 湘东北万古金矿田江东金矿床成因——流体包裹体和H-O同位素制约[J]. 黄金科学技术, 2024, 32(4): 559-578.
[8] 陈桥, 姬龙雪, 董欣, 倪蓉, 李岩松, 佟琳琳, 杨洪英. 尼尔森选矿机富集机制对金矿分选效果的影响研究[J]. 黄金科学技术, 2024, 32(4): 685-693.
[9] 廖秋敏, 谢柳燕, 韩嘉雯. 全球金属镓、锗贸易网络格局演变与供应危机传播研究[J]. 黄金科学技术, 2024, 32(4): 717-730.
[10] 季俊伟, 陈亦霏, 陆静, 罗涵. 黄金国内国际板对原油避险能力的研究[J]. 黄金科学技术, 2024, 32(4): 731-744.
[11] 杨彦, 黄增保, 郭小刚, 许延龙, 颜华. 北祁连榆树沟山金矿区花岗闪长斑岩脉锆石U-Pb年龄、地球化学特征及其地质意义[J]. 黄金科学技术, 2024, 32(3): 387-399.
[12] 李炎, 王建国, 魏生云, 李国璋, 胡建, 王志男. 西藏德新铅多金属矿床地球物理与地球化学综合找矿研究[J]. 黄金科学技术, 2024, 32(3): 400-415.
[13] 张涛, 李德贤, 张鹏强, 赵国亮, 何宇, 牛猛, 俞军真. 镍渣—全尾砂混合骨料配比试验研究[J]. 黄金科学技术, 2024, 32(3): 437-444.
[14] 苏力, 朱海军, 谷守江, 杨兴科, 赵翌辰, 孙雪平, 何虎军, 韩珂, 张玉瑜, 谭江, 谢愿龙, 张龙, 高立博. 宁夏海原西华山地区金矿床地质地球化学特征及成因分析[J]. 黄金科学技术, 2024, 32(2): 191-206.
[15] 俞炳, 丁正江, 陈伟军, 李肖, 刘彩杰, 薛建玲, 曾庆栋, 范宏瑞, 吴金检, 张琪彬. 胶东西岭金矿床黄铁矿热电性特征及深部找矿意义[J]. 黄金科学技术, 2024, 32(2): 207-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!