img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (5): 785-793.doi: 10.11872/j.issn.1005-2518.2023.05.011

• 采选技术与矿山管理 • 上一篇    下一篇

三山岛金矿海底开采井下沉降特点及影响因素浅析

张国栋1(),刘佳2,3,4,马凤山2,3(),李光2,3,郭捷2,3   

  1. 1.山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442
    2.中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
    3.中国科学院地球科学研究院,北京 100029
    4.中国科学院大学,北京 100049
  • 收稿日期:2023-01-09 修回日期:2023-04-09 出版日期:2023-10-31 发布日期:2023-11-21
  • 通讯作者: 马凤山 E-mail:zhanggd@sd-gold.com;fsma@mail.iggcas.ac.cn
  • 作者简介:张国栋(1974-),男,山东莱州人,工程师,从事矿山工程测量工作。zhanggd@sd-gold.com
  • 基金资助:
    国家自然科学基金重点项目“海底采矿对地质环境的胁迫影响与致灾机理”(41831293)

Analysis on the Characteristics and Influencing Factors of Underground Settlement in Submarine Mining of Sanshandao Gold Mine

Guodong ZHANG1(),Jia LIU2,3,4,Fengshan MA2,3(),Guang LI2,3,Jie GUO2,3   

  1. 1.Sanshandao Gold Mine, Shandong Gold Mining(Laizhou) Co. , Ltd. , Laizhou 261442, Shandong, China
    2.Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    3.Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-01-09 Revised:2023-04-09 Online:2023-10-31 Published:2023-11-21
  • Contact: Fengshan MA E-mail:zhanggd@sd-gold.com;fsma@mail.iggcas.ac.cn

摘要:

三山岛金矿新立矿区是我国首例实施海底开采的金属矿山。为了研究新立矿区井下矿体围岩变形破坏特征,以与矿体走向垂直的55号勘探线为监测剖面,通过布设井下四等水准监测系统,对55号勘探线剖面内不同深度开采中段巷道顶板围岩的垂直位移进行了长期监测。分析结果表明:(1)海底不同深度各中段矿体开采引起的变形均表现为对上盘岩体的影响范围大,而对下盘岩体影响范围小,越靠近矿体(或控矿断层F1)部位,顶板围岩的下沉量越大;(2)各中段的累积沉降量曲线总体上表现为不对称漏斗形,其中较浅部的-200 m中段与-240 m中段累积沉降量曲线底部较为平缓,呈近似“锅”状,而深部的-320 m、-400 m、-480 m和-600 m中段沉降曲线呈“漏斗”状;(3)新立矿区矿体厚度、开采深度、开采强度、围岩岩性、围岩岩体结构以及充填效果是影响海底倾斜矿体开采围岩变形的因素,其中,矿区内控矿断层F1的存在直接影响围岩变形曲线的形态。

关键词: 三山岛金矿, 海底开采, 井下沉降, 水准测量, 影响因素

Abstract:

In recent years,with the decrease of land mineral resources,the development of marine minerals has become a global emerging industry,especially the mining of coastal bedrock deposits under the sea,has been the focus of mining development in various countries.For large-scale mining under the sea,the movement and deformation of the submarine rockbody poses a major threat to mining safety.It is important to pay attention to the deformation damage of the surrounding rock,which is important to realize the safe and efficient production of submarine mines. In order to study the deformation and damage characteristics of the surrounding rocks of the underground mine body in the Xinli mining area,the 55 exploration line perpendicular to the mine body was used as the monitoring profile,and the roadway roofs of -200 m,-240 m,-320 m,-400 m,-480 m,and -600 m sublevels were monitored by the underground four-level monitoring system that has been deployed since December 2015.The vertical displacements of the surrounding rocks in sublevels of the roadway at -200 m,-240 m,-320 m,-400 m,-480 m and -600 m were monitored for a long time,and the time series data of the settlement of the roadway roof in each sublevel were obtained.The deformation of the surrounding rock caused by metal ore mining is a complex mechanical problem.By analyzing the multi-year monitoring results,several significant characteristics of underground settlement are revealed.(1)The deformation caused by mining of the orebody in sublevel at different depths of the seabed shows a large influence range on the rock mass of the fault hanging wall,while the influence range on the footwall rock mass is small.(2)The closer to the orebody(or the ore-control fault F1) the greater the subsidence of the rock body,forming the feature that the slope of the curve to the left of the maximum settlement point in the settlement curve is larger in absolute value,while the slope of the curve to the right is slightly smaller in absolute value.(3)The final subsidence curves of the six sublevels in the line 55 profile have similar shapes and are generally asymmetric funnel-shaped,with the -200 m sublevel and the -240 m sublevel having a gentle bottom of the cumulative subsidence curve,which is similar to a “pot”,while the -320 m,-400 m,-480 m and -600 m sublevels have a “funnel” shaped subsidence curve.This phenomenon is related to the mining activities in the mine area.(4)The single settlement value in any monitoring period in the sublevel at any depth has the characteristics of up and down fluctuation,which reflects the non-linear characteristics of settlement deformation to a certain extent.The practice of seabed mining in Sanshandao gold mine confirms that:Since 2005,with the expansion of mining scale,the increase of mining intensity and the extension of mining years,the deformation of some of the underground tunnels is serious,and the movement and deformation of the underground surrounding rocks may cause seawater to gush into the tunnels along the damaged rocks,thus threatening the life safety of mining personnel.The study concluded that the thickness of the orebody,mining depth,mining intensity,surrounding lithology and rock structure as well as filling effect in the Xinli mining area are potential factors affecting the deformation of the surrounding rock in the mining of the inclined orebody.Among them,the presence of the controlling fault F1 in the mine area directly affects the shape of the surrounding rock deformation curve,and this deformation feature should be considered in future production work as well as safety maintenance work(roadway repair work) to prevent from affecting productivity or even generating safety accidents.

Key words: Sanshandao gold mine, seabed mining, underground subsidence, levelling, influencing factors

中图分类号: 

  • TD857

图1

三山岛金矿新立矿区位置"

图2

三山岛金矿新立矿区55号勘探线剖面开拓中段示意图"

图3

三山岛金矿新立矿区55号勘探线监测剖面"

图4

-200 m(a)和-240 m(b)中段累积沉降量曲线"

图5

-320 m(a)和-400 m(b)中段累积沉降量曲线"

图6

-480 m(a)和-600 m(b)中段累积沉降量曲线(沉降值被扩大1 000倍)"

图7

-400 m中段累积沉降量曲线"

图8

2017年新立矿区55号勘探线剖面各中段最大沉降点沉降值曲线(-600 m中段为2019年监测数据)"

图9

55号勘探线剖面不同深度各中段累积沉降曲线特征"

图10

累积沉降曲线中的隆起现象1.拉应力;2.水平构造应力;3.开挖后的矿体;4.矿体;5.断层;6.变形的围岩"

表1

各开采中段出矿量所占当年出矿总量的比例"

中段名称各年份出矿总量比例/%
201620172018201920202021
-200 m中段8.422.472.011.343.883.78
-240 m中段11.657.241.426.156.606.72
-320 m中段10.368.551.191.414.159.66
-400 m中段7.659.674.701.440.572.37
-480 m中段12.9113.218.303.4110.034.50
-600 m中段01.654.3515.939.721.00

图11

各开采中段出矿量所占当年出矿总量的比例"

Brady B H G, Brown E T,1985.Rock Mechanics for Underground Mining[M].London:George Allen Unwin.
Cao Guangming,2019.Abnormal Subsidence Mechanism of Caving Mining Face with Thick Unconsolidated Layers and Collapse Columns[D].Beijing:China University of Mining and Technology-Beijing.
Cao Jiayuan, Ma Fengshan, Guo Jie,et al,2019.Study on subsidence prediction of inclined orebody cut and fill mining in seabed[J].Gold Science and Technology,27(4):522-529.
Ding Deqiang,2007.Study on Theory and Technology of Paste Filling in Underground Goaf of Mine[D].Changsha:Central South University.
He Yueguang, Liu Baochen,2003.Stochastic medium model and monito of surface movements due to excavation[J].Nonferrous Metals Science and Engineering,17(1):20-24.
Jiang Jianping, Zhang Yangsong, Yan Changhong,et al,2002. Study on strata displacement under fault effect in underground engineering[J].Chinese Journal of Rock Mechanics and Engineering,21(8):1257-1262.
Kalenchuk K S, McKinnon S, Diederichs M S,2008.Block geometry and rockmass characterization for prediction of dilution potential into sub-level cave mine voids[J].International Journal of Rock Mechanics and Mining Sciences,45:929-940.
Kang Xinliang, Cai Yinfei,2021.Analysis of mining subsidence law under the compound influence of various geological and mining factors[J].Mining Safety and Environmental Protection,48(4):75-80.
Knothe S,1952.Time influence on a formation of a subsidence surface[J].Archiwum Gornictwa i Hutnictwa,Krakow(in Polish),1(1):1.
Laubscher D H,1994.Cave mining-the state of the art[J].The Journal of the Southern African Institute of Mining and Metallurgy,94(10):279-293.
Li Wei, Chen Chen,2003.Extraction technology of ocean mining[J].China Mining Magazine,12(1):44-46,51.
Liu Donghai, Deng Niandong, Yao Ting,2020.Analysis of main controlling factors of coal mining subsidence in Lu’an mining area[J].Mining Safety and Environmental Protection,47(5):103-107.
Liu Yucheng, Dai Huayang,2019.Hyperbolic function model for predicting the main section surface deformation curve due to approximate horizontal coal seam underground longwall mining[J].Journal of China University of Mining and Technology,48(3):676-681.
Mei Songhua, Sheng Qian, Li Wenxiu,2004.Advances in research on surface and rock mass movement[J].Chinese Journal of Rock Mechanics and Engineering,(Supp.l):4535-4539.
Shi Jibiao,2021. Efficient statistical method for settlement prediction parameters of probability integral method[J].Energy Technology and Management,46(6):197-200.
Unlu T, Akcin H, Yilmaz O,2013.An integrated approach for the prediction of subsidence for coal mining basins[J].Engineering Geology,166:186-203.
Xu Yuhai, Xu Xinqi,2004.Rheologic behavior of high-density backfill and reasonable determination of the parameters for its gravity-flow transport[J].Mining and Metallurgy,13(3):16-19.
Yang W, Xia X,2013.Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on filed measurement and artificial neural networks[J].Computers & Geosciences,52:199-203.
Zeng Zhuoqiao,1980.Physical significance and correct application of parameters of negative exponential function method for calculating surface movement[J].Mine Surveying,(2):28-35.
Zhang Chao, Song Weidong, Fu Jianxin,et al,2020.Stability analysis of rock mass under disturbance of submarine mine[J].Journal of China University of Mining and Technology,49(6):1035-1045.
Zhang Yujun, Zhang Zhiwei,2020.Research progress of mining overlying stratus failure law and control technology[J].Coal Science and Technology,48(11):85-97.
曹光明,2019.陷落柱影响下厚松散层放顶煤工作面地表异常沉陷机理[D].北京:中国矿业大学(北京).
曹家源,马凤山,郭捷,等,2019.海底倾斜矿体开采沉陷预测研究[J].黄金科学技术,27(4):522-529.
丁德强,2007.矿山地下采空区膏体充填理论与技术研究[D].长沙:中南大学.
贺跃光,刘宝琛,2003.工程开挖地表移动的随机介质模型及监测技术[J].江西有色金属,17(1):20-24.
蒋建平,章杨松,阎长虹,等,2002.地下工程中岩移的断层效应探讨[J].岩石力学与工程学报,21(8):1257-1262.
康新亮,蔡音飞,2021.多种地质采矿因素复合影响下开采沉陷规律分析[J].矿业安全与环保,48(4):75-80.
李伟,陈晨,2003.海洋矿产开采技术[J].中国矿业,12(1):44-46,51.
刘东海,邓念东,姚婷,2020.潞安矿区煤炭开采沉陷主要控制因素分析[J].矿业安全与环保,47(5):103-107.
刘玉成,戴华阳,2019.近水平煤层开采沉陷预计的双曲线剖面函数法[J].中国矿业大学学报,48(3):676-681.
梅松华,盛谦,李文秀,2004.地表及岩体移动研究进展[J].岩石力学与工程学报,(增1):4535-4539.
史继彪,2021.概率积分法沉降预测参数高效统计方法[J].能源技术与管理,46(6):197-200.
许毓海,许新启,2004.高浓度(膏体)充填流变特性及自流输送参数的合理确定[J].矿冶,13(3):16-19.
曾卓乔,1980.地表移动计算负指数函数法参数的物理意义及其正确运用[J].矿山测量,(2):28-35.
张超,宋卫东,付建新,等,2020.海底矿山开采扰动下岩体稳定性分析[J].中国矿业大学学报,49(6):1035-1045.
张玉军,张志巍,2020.煤层采动覆岩破坏规律与控制技术研究进展[J].煤炭科学技术,48(11):85-97.
[1] 周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829.
[2] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[3] 张帅, 赵鑫, 彭祥玉, 王宇斌, 桂婉婷, 田家怡. 基于双隐含层BP神经网络的某金矿回收率预测研究[J]. 黄金科学技术, 2024, 32(1): 170-178.
[4] 许云美, 袁利伟, 龙皓楠. 干堆尾矿库稳定性影响因素的敏感性分析[J]. 黄金科学技术, 2023, 31(6): 1014-1022.
[5] 廖秋敏,罗连英. 稀土产品全球贸易网络格局演化及其影响因素[J]. 黄金科学技术, 2023, 31(5): 823-834.
[6] 何玉龙, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿地面沉降特征及原因分析[J]. 黄金科学技术, 2023, 31(4): 605-612.
[7] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[8] 赵兴东,曾楠,陈玉民,魏慧,王成龙,侯成录,杜云龙,范纯超. 三山岛金矿井下无人开采区域中深孔落矿嗣后充填连续采矿工艺设计[J]. 黄金科学技术, 2021, 29(2): 200-207.
[9] 黄锴强,徐水太,薛飞. 基于ISM和ANP的废弃稀土矿山治理效果影响因素分析[J]. 黄金科学技术, 2021, 29(2): 306-314.
[10] 王善飞, 王康, 马凤山, 卢蓉. 三山岛金矿“三下”开采工艺优化与灾害防治[J]. 黄金科学技术, 2020, 28(5): 734-742.
[11] 戚伟,李威,李振阳,赵国彦. 基于CRITIC-CW法的地下矿岩体质量评价[J]. 黄金科学技术, 2020, 28(2): 264-270.
[12] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[13] 曹家源,马凤山,郭捷,张国栋,李兆平. 海底倾斜矿体开采沉陷预测研究[J]. 黄金科学技术, 2019, 27(4): 522-529.
[14] 李威,马凤山,卢湘鹏,曹家源,郭捷. 基于三维地震探测的海底矿区地质结构分析[J]. 黄金科学技术, 2019, 27(4): 530-538.
[15] 段学良,马凤山,赵海军,郭捷,顾鸿宇,刘帅奇. 滨海矿山矿坑涌水源识别与混合比研究[J]. 黄金科学技术, 2019, 27(3): 406-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!