img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (1): 100-108.doi: 10.11872/j.issn.1005-2518.2024.01.130

• 采选技术与矿山管理 • 上一篇    下一篇

基于CWM-TOPSIS模型的金属矿山企业安全管控能力评价

李筱1(),许钧1,张成旭2,隋来伦2(),王在勇3   

  1. 1.南京信息工程大学管理工程学院,江苏 南京 210000
    2.山东省地质矿产勘查开发局第六地质大队,山东 烟台 264000
    3.太原理工大学原位改性采矿教育部重点实验室,山西 太原 030024
  • 收稿日期:2023-09-11 修回日期:2024-01-12 出版日期:2024-02-29 发布日期:2024-03-22
  • 通讯作者: 隋来伦 E-mail:202211630001@nuist.edu.cn;414442702@qq.com
  • 作者简介:李筱(1994-),女,山东泰安人,博士研究生,从事应急管理方面的研究工作。202211630001@nuist.edu.cn
  • 基金资助:
    山东省重点研发计划项目“深部金矿资源评价理论、方法与预测”(2017CXGC1604)

Evaluation of Safety Control Capacity of Metal Mining Enterprises Based on CWM-TOPSIS Model

Xiao LI1(),Jun XU1,Chengxu ZHANG2,Lailun SUI2(),Zaiyong WANG3   

  1. 1.School of Management Engineering, Nanjing University of Information Science and Technology, Nanjing 210000, Jiangsu, China
    2.No. 6 Geological Brigade of Shandong Provincial Bureau of Geology and Mineral Resources, Yantai 264000, Shandong, China
    3.Key Laboratory of In-Situ Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2023-09-11 Revised:2024-01-12 Online:2024-02-29 Published:2024-03-22
  • Contact: Lailun SUI E-mail:202211630001@nuist.edu.cn;414442702@qq.com

摘要:

为进一步提升金属矿山安全管理水平,推动金属矿山企业安全高质量发展,构建了金属矿山安全管控能力评价指标体系。运用AHP-EWM组合赋权的CWM法综合分析金属矿山企业安全管控能力的影响因素,采用CWM-TOPSIS法构建了安全管控能力评价模型,并借助AHP-TOPSIS法和EWM-TOPSIS法进行模型验证。工程实例研究表明:应急处置能力、安全技术水平和风险智能预警能力这3个因素对金属矿山企业安全管控能力的综合影响程度最大,企业1的安全管控能力最强。分析结果与实际情况一致,说明该评价方法和模型有利于金属矿山企业准确、快速把握安全管控工作当前状态和薄弱环节,从而进一步改善和提升矿山安全治理水平。

关键词: 金属矿山企业, 安全管控能力, 熵权法, 组合赋权, TOPSIS法, 逼近理想解

Abstract:

The metal mine is an important industry type for China’s social-economic development in China.In recent years,mines have been constructing safety digitalization,and improving the level of mine safety management and control capacity is the key aspect of achieving enterprise transformation and high-quality development.The Internet of Things,cloud computing,roboticized equipment,and modern mining deve-lopment,safety production and other technologies are deeply integrated,gradually forming an intelligent security control system that integrates situational awareness,dynamic prediction,and intelligent warning.During this process,metal mining enterprises still face problems such as lack of safety management,unclear decision-making targets,and frequent safety accidents.Therefore,during the construction of metal mine safety digi-talization,a new evaluation index system for metal mine safety control capacity was proposed.The CWM method was used to comprehensively analyze the influencing factors of the safety control capacity of metal mining enterprises,and the CWM-TOPSIS method was used to construct an evaluation model for the safety control capacity of metal mines.The safety management and control capacity of five gold enterprises in Shandong Province was evaluated.AHP-TOSIS and EWM-TOPSIS model were used to verify the CWM-TOSIS model.The results show that the order of the most significant indicators affecting the safety management and control capacity of metal mining enterprises is emergency response ability (x11) > safety technology level (x10) > risk intelligent early warning ability (x13),and Enterprise 1 has the highest safety control capacity,which is consistent with the actual situation.The model and method can be adapted to the safety control capacity evaluation of metal mines.

Key words: metal mining enterprises, safety control capacity, entropy weight method, combination weighting, TOPSIS method, approximate ideal solution

中图分类号: 

  • TD76

图1

金属矿山企业安全管控能力评价指标体系"

表1

判断矩阵标度定义"

标度含义
12个要素相比,同样重要
32个要素相比,后者比前者稍重要
52个要素相比,后者比前者明显重要
72个要素相比,后者比前者强烈重要
92个要素相比,后者比前者极端重要
2,4,6,8上述相邻判断的中间状态
倒数2个要素相比,后者比前者的重要性标度

表2

判断矩阵 S 的权重计算及一致性检验结果"

Sx1x2x3x4x5x6x7x8x9x10x11x12x13ω1权重排序
x111.36652.63770.84171.08110.21800.43272.61990.23850.22240.24580.22101.74190.046311
x20.731810.27150.97700.48620.20550.29150.32940.36830.24850.21940.37480.54260.021213
x30.37913.682810.39040.28920.55980.54640.21090.49407.26571.10050.52387.76680.08896
x41.18801.02362.561510.22380.35450.24930.63820.31460.20061.68910.20420.35780.041412
x50.92492.05673.45834.468710.63310.57830.45160.82500.28970.20470.47140.46710.050610
x64.58824.86741.78632.82081.579611.30890.60870.41460.97660.32890.38580.38060.06519
x72.31113.43021.83014.01121.72930.764010.29060.72840.22760.51493.57743.34990.08448
x80.38173.03624.74231.56702.21431.64283.44210.21290.29190.38222.60832.09160.08935
x94.19262.71502.02453.17831.21212.41191.3734.697011.0050.2420.2090.6330.08657
x104.49604.02480.13764.98443.45141.02394.3943.42630.995210.29770.22170.23770.09744
x114.06844.55880.90870.59204.88623.04071.9422.61624.13593.359111.26020.49230.12331
x124.52422.66771.90904.89652.12152.59200.2800.38344.78914.51020.793510.24700.10762
x130.57411.84310.12882.79502.14082.62740.2990.47811.58074.20752.03124.049010.09813

表3

各评价指标的计算结果"

一级指标二级指标zjω2权重排序

企业安全

管理能力

责任主体落实x10.84720.045513
管理机构建立x20.78940.06279
安全制度建立x30.67120.09794
培训与宣传力度x40.75510.07298

企业员工

安全水平

员工安全意识x50.83320.049611
安全技能水平x60.74080.07726
安全工作执行力x70.83570.048912

企业风险

控制能力

危险源辨识x80.80770.057210
安全隐患排查x90.71370.08525
安全技术水平x100.63810.10772
应急处置能力x110.59370.12091

安全数智化

水平

多维态势感知能力x120.75500.07297
风险智能监测能力x130.65910.10143

表4

各评价指标的综合权重值"

评价指标3种评价方法综合权重ω*

综合权重

排序

AHP法EWM法CWM法
责任主体落实x10.04630.04550.046112
管理机构建立x20.02120.06270.032113
安全制度建立x30.08890.09790.09125
培训与宣传力度x40.04140.07290.049711
员工安全意识x50.05060.04960.050310
安全技能水平x60.06510.07720.06839
安全工作执行力x70.08440.04890.07518
危险源辨识x80.08930.05720.08097
安全隐患排查x90.08650.08520.08626
安全技术水平x100.09740.10770.10012
应急处置能力x110.12330.12090.12271
多维态势感知能力x120.10760.07290.09854
风险智能监测能力x130.09810.10140.09903

图2

3种方法各评价指标的综合权重值对比"

表5

各金属矿山企业样本的正、负理想解"

矿山企业正理想解负理想解
企业10.15270.1992
企业20.19170.1701
企业30.23950.1437
企业40.18410.1952
企业50.20930.1662

表6

各企业3种方法相对贴进度计算结果"

矿山

企业

AHP-

TOPSIS法

EWM-

TOPSIS法

CWM-

TOPSIS法

CWM-TOPSIS法贴进度排序
企业10.56880.55900.56601
企业20.46720.48150.47013
企业30.38910.33500.37505
企业40.52950.47440.51472
企业50.43590.46420.44264

表7

评价指标体系综合评分排名"

矿山企业安全管控能力评分排序
企业18.41541
企业28.27732
企业37.88205
企业48.14083
企业57.96704
Cai Meifeng, Tan Wenhui, Wu Xinghui,et al,2021.Current situation and development strategy of deep intelligent mining in metal mines[J].The Chinses Journal of Nonferrous Metals,31(11):3409-3421.
Chang Xiaocun,2019.Construction and operation evaluation of major disasters prevention and safety guarantee system for coal mining enterprise[J].Journal of Safety Science and Technology,15 (10):140-145.
Ding Baichuan,2017.Features and prevention countermeasures of major disasters occurred in China coal mine[J].Coal Science and Technology,45 (5):109-114.
Gao Zhenxing, Guo Jinping,2020.Research on safety evaluation of tailings pond based on entropy method-catastrophe theory[J].Gold Science and Technology,28 (3):450-456.
Jiang Lan, Zhong Lü, Peng Ya,et al,2021.Evaluation of safety management system effectiveness for airline companies based on combined weights and fuzzy method[J].Journal of Safety and Environment,21 (5):2107-2113.
Li Dongyin, Sun Kaixuan, Wang Shen,et al,2022.Study on safety evaluation of intelligent working face based on extension theory with entropy weight approach[J].Journal of Henan Polytechnic University(Natural Science),41 (3):1-9.
Li Jun, Zhang Bo,2023.Safety evaluation of coal mine comprehensive dust control system based on IFAHP-improved entropy weight method[J].Coal Technology,42 (9):195-199.
Li Junjie, Cheng Wanjing, Liang Mei,et al,2020.Comprehensive evaluation on sustainable development of China’s advanced coal to chemicals industry based on EWM-AHP[J].Chemical Industry and Engineering Progress,39 (4):1329-1338.
Qu Yang, Zhang Xuebo,2021.Evaluation of occupational hazards in coal mine workplaces based on combined empowerment cloud model[J].Coal Engineering,53(10):153-159.
Wang Guofa, Du Yibo, Chen Xiaojing,et al,2023.Development and innovative practice from coal mine mechanization to automation and intelligence:Commemorating the 50th anniversary of the founding of Journal of Mine Automation[J].Journal of Mine Automation,49(6):1-18.
Wang Meng, Shi Xiuzhi, Zhang Shu,2020.Evaluation research on safety guarantee conditions of underground metal mines oriented to optimizing production capacity[J].Gold Science and Technology,28 (5):753-760.
Wang Jianbin, Li Guoqing, Qiang Xingbang,et al,2024.Intelligent analysis system of mine safety risk based on dual prevention system[J].Metal Mine,53(1):99-108.
Wang Shaofeng, Li Xibing,2021.Cutting characteristic and non-explosive mechanized rock-breakage practice of deep hard rock[J].Gold Science and Technology,29(5):629-636.
Wang Yong, Wu Aixiang, Yang Jun,et al,2023.Progress and prospective of the mining key technology for deep metal mines[J].Chinese Journal of Engineering,45(8):1281-1292.
Wu Jianbin, Gu Zhihong, Wang Zheng,et al,2021.Multi-attribute evaluation on lean operation and maintenance of distribution network equipment based on game variable weight cloud model[J].Science Technology and Engineering,21 (27):11615-11623.
Wu Liyun, Yang Yuzhong, Zhang Qiang,2007.TOPSIS method for evaluation on mine ventilation system[J].Journal of China Coal Society,(4):407-410.
Xing Yuanyuan, Zhang Feifei,2021.Risk evaluation of coal spontaneous combustion based on AEM-TOPSIS[J].Coal Engineering,53(11):131-134.
Yang Guoyong, Chen Chao, Gao Shulin,et al,2015.Study on the height of water flowing fractured zone based on analytic hierarchy process and fuzzy clustering analysis method[J].Journal of Mining and Safety Engineering,32 (2):206-212.
Ye Wentao, Cheng Lianhua,2021.Safety input-output efficiency evaluation of coal mining enterprises under high quality development[J].Journal of Xi’an University of Science and Technology,41 (4):700-707.
Yin Bin, Shen Xia, Xiaoming Chuai,2020.Study on assessment of safe behaviors in Shanxi coal enterprises[J].Safety in Coal Mines,51 (6):255-259.
Zhang Jinggang, Wang Qingyan, Zhao Shufeng,2022.Application of HAZOP-LOPA coal mine safety risk assessment method based on Bayesian network[J].Mining Safety and Environmental Protection,49 (1):114-120.
Zhang Xiaodong, Liu Xiangnan, Zhao Zhipeng,et al,2019.Geological disaster hazard assessment in Yanchi County based on AHP[J].Remote Sensing for Natural Resources,31 (3):183-192.
Zhang Yanli,2022.Research on scientific and technological development and safety and environmental issues in metal mines—Comment on “Prospective Research on the Development of Safety and Environmental Science and Technology in Metal Mines in China”[J].Nonferrous Metals Engineering,12 (10):155-156.
Zhang Yuanqiu, Tian Jun, Feng Gengzhong,2015.The evaluation model of emergency material supplying capability based on ANP[J].Chinese Journal of Management,12 (12):1853-1859.
Zou Long,2022.Research on ventilation system optimization in the No.2 mine of Jinchuan based on three-dimensional digital model[J].Mining Research and Development,42(9):152-157.
蔡美峰,谭文辉,吴星辉,等,2021.金属矿山深部智能开采现状及其发展策略[J].中国有色金属学报,31(11):3409-3421.
昌孝存,2019.煤矿企业重大灾害预防与安全保障体系构建与运行评价[J].中国安全生产科学技术,15(10):140-145.
丁百川,2017.我国矿山主要灾害事故特点及防治对策[J].煤炭科学技术,45(5):109-114.
高振兴,郭进平,2020.基于熵值法—突变理论的尾矿库安全评价研究[J].黄金科学技术,28(3):450-456.
姜兰,吕忠,彭亚,等,2021.基于组合权重-Fuzzy的航空公司安全管理体系有效性评估[J].安全与环境学报,21 (5):2107-2113.
李东印,孙凯旋,王伸,等,2022.基于熵权—可拓理论的智能化综采工作面安全评价[J].河南理工大学学报(自然科学版),41 (3):1-9.
李军,张波,2023.基于IFAHP-改进熵权法的煤矿综合防尘体系安全评价[J].煤炭技术, 42(9):195-199.
李俊杰,程婉静,梁媚,等,2020.基于熵权—层次分析法的中国现代煤化工行业可持续发展综合评价[J].化工进展,39(4):1329-1338.
屈扬,张学博,2021.基于组合赋权云模型的矿山作业场所职业危害综合评价[J].煤炭工程,53(10):153-159.
王国法,杜毅博,陈晓晶,等,2023.从煤矿机械化到自动化和智能化的发展与创新实践——纪念《工矿自动化》创刊50周年[J].工矿自动化, 49(6):1-18.
王猛,史秀志,张舒,2020.面向产能优化的地下金属矿山安全保障条件评价研究[J].黄金科学技术,28(5):753-760.
王佳斌,李国清,强兴邦,等,2024.基于双重预防体系的矿山安全风险智能分析系统[J].金属矿山,53(1):99-108.
王少锋,李夕兵,2021. 深部硬岩可切割性及非爆机械化破岩实践[J].黄金科学技术,29(5):629-636.
王勇,吴爱祥,杨军,等,2023.深部金属矿开采关键理论技术进展与展望[J].工程科学学报,45(8):1281-1292.
吴建斌,谷志红,王正,等,2021.基于博弈变权—云模型的配电网设备精益运维多属性评价[J].科学技术与工程,21(27):11615-11623.
吴立云,杨玉中,张强,2007.矿井通风系统评价的TOPSIS方法[J].煤炭学报,(4):407-410.
邢媛媛,张飞飞,2021.基于AEM-TOPSIS的煤炭自燃风险评价研究[J].煤炭工程,53(11):131-134.
杨国勇,陈超,高树林,等,2015.基于层次分析—模糊聚类分析法的导水裂隙带发育高度研究[J].采矿与安全工程学报,32 (2):206-212.
叶文涛,成连华,2021.高质量发展下金属矿山企业安全投入产出效率评价[J].西安科技大学学报,41(4):700-707.
尹斌,申霞,揣小明,2020.山西煤矿企业的行为安全评价研究[J].煤矿安全,51(6):255-259.
张景钢,王清焱,赵淑枫,2022.基于贝叶斯网络的HAZOP-LOPA煤矿安全风险评价方法应用研究[J].矿业安全与环保,49(1):114-120.
张晓东,刘湘南,赵志鹏,等,2019.基于层次分析法的盐池县地质灾害危险性评价[J].国土资源遥感,31(3):183-192.
张艳利,2022.金属矿山的科技发展和安全与环境问题研究——评《我国金属矿山安全与环境科技发展前瞻研究》[J].有色金属工程,12(10):155-156.
张苑秋,田军,冯耕中,2015.基于网络层次分析法的应急物资供应能力评价模型[J].管理学报,12(12):1853-1859.
邹龙,2022.基于三维数字化模型的金川二矿区通风系统优化研究[J].矿业研究与开发,42(9):152-157.
[1] 杨玮, 邓博, 龙涛, 邓莎, 薛梦鸽, 方楠. 基于效果—效率的金矿绿色矿山建设综合评价研究[J]. 黄金科学技术, 2023, 31(6): 919-929.
[2] 杨玮, 薛梦鸽, 龙涛, 邓莎, 邓博, 方楠. 基于DPSIR模型的黄金行业绿色矿山建设综合评价研究[J]. 黄金科学技术, 2023, 31(4): 635-645.
[3] 郑明贵, 王馨悦, 顾东明, 张研博. “一带一路”背景下巴基斯坦矿业投资环境风险评价与预测[J]. 黄金科学技术, 2023, 31(4): 646-658.
[4] 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712.
[5] 温廷新,苏焕博. 基于MICE_RF的组合赋权—极限随机树岩爆预测模型[J]. 黄金科学技术, 2022, 30(3): 392-403.
[6] 唐宇,王少锋. 单向受限应力下镐型截齿破岩特性及其影响因素分析[J]. 黄金科学技术, 2021, 29(5): 669-679.
[7] 景岳,王少锋,鲁金涛. 矿岩开挖松动区厚度预测及非爆机械化开采判据[J]. 黄金科学技术, 2021, 29(4): 525-534.
[8] 石勇,史秀志,丁文智. 基于改进熵权法—未确知测度模型的黄金洞尾矿库综合安全评价[J]. 黄金科学技术, 2021, 29(1): 155-163.
[9] 柯愈贤,王成,方立发,廖宝泉. 基于组合权重和物元分析的矿山安全生产状况研究[J]. 黄金科学技术, 2020, 28(6): 910-919.
[10] 王猛, 史秀志, 张舒. 面向产能优化的地下金属矿山安全保障条件评价研究[J]. 黄金科学技术, 2020, 28(5): 753-760.
[11] 李彤彤, 王玺, 刘焕新, 侯奎奎, 李夕兵. 基于组合赋权的T-FME岩爆倾向性预测模型研究及应用[J]. 黄金科学技术, 2020, 28(4): 565-574.
[12] 周科平, 侯霄峰, 林允. 基于综合决策云模型的围岩稳定性分级方法研究[J]. 黄金科学技术, 2020, 28(3): 372-379.
[13] 赵国彦,邱菊,赵源,裴佃飞,李洋,吴攀. 金属矿绿色开采评价方法探讨[J]. 黄金科学技术, 2020, 28(2): 169-175.
[14] 赵国彦,吴攀,朱幸福,赵源,李洋,邱菊. 基于灰色关联分析的三山岛金矿绿色开采技术优先级评价[J]. 黄金科学技术, 2019, 27(6): 835-843.
[15] 胡建华,徐朔寒,徐泽林,韩磊. 城市地下矿山采矿方法的数值与熵权耦合优选[J]. 黄金科学技术, 2019, 27(4): 513-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!