img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (1): 132-143.doi: 10.11872/j.issn.1005-2518.2024.01.146

• 采选技术与矿山管理 • 上一篇    下一篇

基于优化组合赋权的可拓学磷矿山岩体质量评价

凡奥奇1(),王万禄2,李树建2,张斌2,刘映辉2,吴浩1,2()   

  1. 1.中国矿业大学矿业工程学院,江苏 徐州 221116
    2.云南磷化集团有限公司,云南 昆明 650600
  • 收稿日期:2023-10-24 修回日期:2024-01-09 出版日期:2024-02-29 发布日期:2024-03-22
  • 通讯作者: 吴浩 E-mail:ts22020010a31@cumt.edu.cn;hoekwu@cumt.edu.cn
  • 作者简介:凡奥奇(1999-),男,安徽阜阳人,硕士研究生,从事岩石力学方面的研究工作。ts22020010a31@cumt.edu.cn
  • 基金资助:
    国家自然科学基金项目“深部硬岩巷道围岩板裂化破坏动静力学响应机制”(52204160);江苏省自然科学基金项目“高应力硬岩爆破开挖诱发围岩非常规破裂特征及力学机理”(BK20210515);中国博士后科学基金项目“滇中地区深井巷道围岩板裂破坏机理与失稳判据”(2022MD713814)

Evaluation of Rock Mass Quality of Phosphorite Mines by Topology Based on Optimal Combination Weight

Aoqi FAN1(),Wanlu WANG2,Shujian LI2,Bin ZHANG2,Yinghui LIU2,Hao WU1,2()   

  1. 1.School of Mines, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    2.Yunnan Phosphate Chemical Group Co. , Ltd. , Kunming 650600, Yunnan, China
  • Received:2023-10-24 Revised:2024-01-09 Online:2024-02-29 Published:2024-03-22
  • Contact: Hao WU E-mail:ts22020010a31@cumt.edu.cn;hoekwu@cumt.edu.cn

摘要:

为解决岩体质量评价相邻等级之间指标参数模糊不确定性问题,引入可拓学理论,提出基于优化组合赋权的可拓学岩体质量分级模型,对昆阳二矿磷矿山地下开采的岩石进行质量评价。首先,根据矿山地质特征选取岩石单轴饱和抗压强度(Rc)、岩石质量指标(RQD)、节理间距(Jd)、结构面条件(Jf)、地下水状态(W)和地应力影响系数(Z)6个影响指标,将每个指标划分为5个等级;然后通过改进的层次分析法和熵权法分别确定指标的主观和客观权重,引入矩估计法对主客观权重进行优化组合;最后应用修正的RMR法和Q系统法对岩体质量进行评价,将分级结果与基于优化组合赋权的可拓学岩体质量分级结果进行比较。研究表明:5个待评价岩体中,除上矿体N3的模型分级结果与修正RMR法存在差异之外,其余岩体的分级结果与修正RMR法相同,使用Q系统法的评价结果整体偏低。此外,该模型可得出岩体质量等级偏向于相邻等级的程度,分级结果符合昆阳二矿磷矿山生产勘探地质报告岩体质量范围,比修正RMR法和Q系统法更加准确,验证了本文方法的可靠性,为地下矿山开采提供了技术支撑。

关键词: 岩体质量评价, 可拓学, 物元模型, 矩估计法, RMR法, 改进层次分析法

Abstract:

In order to solve the problem of fuzzy uncertainty of index parameters between adjacent grades of rock quality evaluation, the theory of topology was introduced and the topological rock mass quality grading model based on optimal combination weight was proposed to evaluate the quality of rocks in underground mining of the phosphate mine in Kunyang No.2 mine.According to the geological characteristics of the mine,six influence indexes,namely,uniaxial saturated compressive strength of rock(Rc),rock quality index(RQD),joint spacing(Jd),structural surface condition(Jf),groundwater status(W) and geostress influence coefficient(Z) were selected,and each index was divided into five grades.Then,the subjective and objective weights of the indicators were determined by the improved hierarchical analysis and entropy weight methods,respectively,and the moment estimation method was introduced to optimize the combination of subjective and objective weights.Finally,the modified RMR method and Q-system method were applied to evaluate the quality of the rock mass,and the grading results were compared with the quality classification results of the rock mass based on the optimal combination weights.The results show that,among the five rock masses to be evaluated,the evaluation result for the upper ore body rock is Class Ⅱ,with a characteristic value of 2.57,indicating good rock mass quality and certain self-stabilizing ability.It is determined that the support method of anchor spraying and hanging net should be adopted.For the lower ore body,the characteristic value is 3.68,indicating that the rock mass quality is approaching Class Ⅳ,and the stability of the surrounding rock in the roadway is poor.Immediate initial spraying should be carried out after the excavation of the roadway to control the deformation of the surrounding rock,followed by the use of the anchor spraying and hanging net support method.There are differences in the grading results of the upper ore body N3,and the grading results of the rest of the rock bodies by the proposed method are the same as those of the modified RMR method.The overall low evaluation results using the Q-system method are caused by the failure to take into account the role of geostress and the discontinuity in the grading between the grades.In addition,the model is able to determine the degree to which the rock mass quality grade leans towards the adjacent grade.The classification results are consistent with the geological exploration report of the Kunyang No.2 mine,and are more accurate than the modified RMR method and Q-system method,validating the reliability of the method proposed in this paper and providing technical support for underground mining.

Key words: rock mass quality evaluation, topology, material element model, moment estimation method, RMR method, improved analytic hierarchy process

中图分类号: 

  • TD163.3

表1

1~9标度判断"

标度含义
1表示2个因素相比,具有同等重要性
3表示2个因素相比,前者比后者稍微重要
5表示2个因素相比,前者比后者明显重要
7表示2个因素相比,前者比后者强烈重要
9表示2个因素相比,前者比后者极端重要
2,4,6,8上述2个相邻判断的中值
倒数因素ij比较判断,则因素ji比较判断得bij =1/bji

表2

随机一致性指标RI取值"

维数nRI维数nRI
1071.36
2081.41
30.5291.46
40.89101.49
51.12111.52
61.26121.54

图1

昆阳磷矿二矿不同巷道破坏类型(a)斜坡道通过破碎带冒顶坍塌;(b)斜井通过溶洞片帮;(c)斜坡道穿越F2断层围岩冒落;(d)中部井马头门页岩顶板掉碴"

图2

区域地质构造图1.断裂;2.逆断层;3.正断层;4.背斜/向斜;5.矿区"

表3

矿区岩体节理裂隙调查结果"

调查地点

调查

长度

/m

测带

宽度

/m

节理裂隙数量

/条

节理

间距

/m

节理裂隙密度

/(条·m-1

节理倾向

和倾角

充填情况(结合好

/一般/差)

渗水性

(干燥/潮湿)

结构面粗糙度

(粗糙/平坦/光滑)

结构面张开度

(张开/愈合/闭合)

1主斜坡道,底板白云岩5.73.341.430.70250°∠82°一般滴水(严重)粗糙张开
21 980 m中段7号盘区斜坡道,顶板白云岩9.52.0480.205.0598°∠89°一般潮湿(一般)平坦张开
31 980 m中段6号盘区斜坡道,顶板粉砂岩10.01.581.250.80114°∠79.5°潮湿(很少)粗糙张开
41 980 m充填回风连接巷,下矿层10.02.0730.147.30187°∠73.8°一般渗水(严重)平坦张开
5接1 980 m充填回风巷,夹层10.02.0550.185.5053°∠80.8°无充填潮湿平坦张开
61 980 m中段5号盘区充填回风巷,上矿层13.01.5500.263.85161.5°∠68.5°潮湿平坦张开

表4

岩体质量评价标准"

级别Rc/MPaRQD/%WJfJd/cmZ
250~30090~10011~15(干燥)25~30200~4000~0.2
100~25075~908~11(潮湿)20~2560~2000.2~0.4
50~10050~755~8(渗水)14~2022~600.4~0.6
25~5025~502~5(滴水)7~146~220.6~0.8
1~250~250~2(涌水)0~70~60.8~1.0

表5

岩体质量指标实测值"

采场名称待评区域代号Rc/MPa

RQD

/%

WJfJd/cmZ
粉砂岩N1112.7253.3311.5026.00125.000.07
顶板白云岩N2119.8610.0010.0017.0019.790.06
上矿体N3105.008.339.0019.0026.000.07
下矿体N499.338.336.6017.0013.700.09
底板白云岩N5123.5320.003.0023.80142.500.08

表6

量纲化后的岩体质量评价标准"

级别Rc/MPaRQD/%WJfJd/cmZ
0.83~1.000.90~1.000.73~1.00(干燥)0.83~1.000.50~1.000.80~1.00
0.33~0.830.75~0.900.53~0.73(潮湿)0.67~0.830.15~0.500.60~0.80
0.16~0.330.50~0.750.33~0.53(渗水)0.47~0.670.06~0.150.40~0.60
0.08~0.160.25~0.500.13~0.33(滴水)0.23~0.470.02~0.060.20~0.40
0.00~0.080.00~0.250.00~0.13(涌水)0.00~0.230.00~0.020.00~0.20

表7

量纲化后的岩体质量指标实测值"

采场名称待评区域代号Rc/MPaRQD/%WJfJd/cmZ
粉砂岩N10.380.530.770.870.310.93
顶板白云岩N20.400.100.670.570.050.94
上矿体N30.350.080.600.630.070.93
下矿体N40.330.080.440.570.030.91
底板白云岩N50.410.200.200.790.360.92

表8

N2区域岩石各指标对5个质量等级的关联度"

等级指标对各等级的关联度
v21v22v23v24v25v26
-0.52-0.89-0.15-0.38-0.90.30
0.14-0.870.30-0.19-0.67-0.70
-0.15-0.80-0.300.5-0.09-0.85
-0.38-0.60-0.51-0.190.13-0.90
-0.440.40-0.62-0.44-0.41-0.93

表9

岩体质量分级结果"

评价岩体Km1Km2Km3Km4Km5JJ*
粉砂岩-0.1308-0.1045-0.3689-0.5012-0.61081.99
顶板白云岩-0.5085-0.4223-0.1899-0.3621-0.29313.64
上矿体-0.3899-0.3032-0.3232-0.5022-0.41242.57
下矿体-0.4789-0.4654-0.1562-0.3226-0.31483.68
底板白云岩-0.2606-0.2427-0.5146-0.4377-0.45372.15

表10

岩体质量RMR评分"

分类参数岩石类别及评分情况
粉砂岩顶板白云岩上矿体下矿体底板白云岩
1完整岩石强度/MPa112.72119.86105.0099.33123.53
评分值121212712
2岩石质量指标RQD/%53.3310.008.338.3320.00
评分值133333
3节理间距/cm125.0019.7926.0013.70142.50
评分值15810815
4节理条件结构面张开,表面粗糙,充填情况差结构面张开,表面较平坦,充填状况一般结构面张开,表面较平坦,充填状况好结构面张开,表面较平坦,充填状况一般结构面张开,表面粗糙,充填状况一般
评分值2617211626
5地下水条件潮湿(很少)潮湿(一般)潮湿渗水严重滴水严重
评分值10101075
RMR总分值7650564161
岩石分级

表11

岩体质量评价结果比较"

待评岩体本文方法等级特征值J*修正RMR法Q系统法
粉砂岩1.99
顶板白云岩3.64
上矿体2.57
下矿体3.68
底板白云岩2.15
Cao Chen, Li Huizhong, Chen Jianping,et al,2017.Rock quality evaluation of dam foundation based on component and cloud model weighting method[J].Journal of Northeastern University (Natural Science),38(11):1643-1647.
Cao Wengui, Zhang Yongjie,2006.Study on two-level fuzzy synthetic judgement method with changing weight value for rock quality classification in underground structures[J].Chinese Journal of Rock Mechanics and Engineering,(8):1612-1618.
Chai Naijie, Zhou Wenliang,2023.Quality classification of rock mass in dam foundation based on optimized combination weight and fuzzy variable set[J].Journal of Jilin University(Earth Science Edition),53(2):514-525.
Chen Junchi,2014.Research of analyzing the stability of stope and support technology based on rock mass classification[D].Shenyang:Northeastern University.
Chen Mao, Yao Xiwen, Xu Kaili,2022.Evaluation of water inrush risk in metal mines based on AHP-EWM-Cloud model[J].Nonferrous Metals Engineering,12(11):102-110.
Guo Bin, Xue Xilong, Xu Min,2011.Application of improved analytic hierarchy process-grey clustering method on mine rock mass classification[J].Metal Mine,40(11):14-19.
He Huaijian, Bai Shiwei, Chen Jian,2002.Illation of geotechnical engineering expert system and its application[J].Chinese Journal of Rock Mechanics and Engineering,(8):1239-1242.
Hu Jianhua, Guo Mengmeng, Zhou Tan,et al,2021.Rock mass quality evaluation model based on improved transfer learning algorithm[J].Gold Science and Technology,29(6):826-833.
Jiang W, Wang Y C, Yang J G,et al,2023.Surrounding rock quality evaluation and application development for highway tunnel based on engineering applicability[J].Bulletin of Engineering Geology and the Environment,82(4):115.
Kang Zhiqiang, Zhou Hui, Feng Xiating,et al,2007.Evaluation of high rock slope quality based on theory of extenics[J].Journal of Northeastern University(Natural Science),(12):1770-1774.
Li Chuiquan,2020.Quality Evaluation of Rock Mass and Stability Analysis of Surrounding Rock in Underground Space[D].Nanjing:Nanjing University of Science and Technology.
Liang Guilan, Xu Weiya, Tan Xiaolong,2010.Application of extension theory based on entropy weight to rock quality evaluation[J].Rock and Soil Mechanics,31(2):535-540.
Liu Yanzhang, Sheng Jianlong, Ge Xiurun,et al,2007.Evaluation of rock mass quality based on fractal dimension of rock mass discontinuity distribution[J].Rock and Soil Mechanics,(5):971-975.
Liu Z X, Dang W G,2014.Rock quality classification and stability evaluation of undersea deposit based on M-IRMR[J].Tunnelling and Underground Space Technology,40:95-101.
Ministry of Water Resources of the People’s Republic of China,2015. Standard for engineering classification of rock mass: [S].Beijing:China Planning Press.
Qiu Daohong, Chen Jianping, Que Jinsheng,et al,2008.Evaluation of tunnel rock quality with routh sets theory and artificial neural networks[J].Journal of Jilin University(Earth Science Edition),(1):86-91.
Ruan Y K, Chen J Z, Fan Z M,et al,2023.Application of K-PSO clustering algorithm and game theory in rock mass quality evaluation of Maji hydropower station[J].Applied Sciences,13(14):8467.
Salimi A, Rostami J, Moormann C,2019.Application of rock mass classification systems for performance estimation of rock TBMs using regression tree and artificial intelligence algorithms[J].Tunnelling and Underground Space Technology,92:103046.
Xiao Yunhua, Wang Qing, Chen Jianping,2009.Application of method for weight calculation based on optimization technique to evaluate rock mass quality[J].Rock and Soil Mechanics,30(9):2686-2690.
Xu Xianfeng, Xing Pengfei, Wang Suihong,et al,2022.Rock mass quality evaluation and application based on game theory and G1-EW-TOPSIS method[J].Gold Science and Technology,30(5):704-712.
Yin Huiyong, Zhao Han, Xu Lin,et al,2020.Classification of rock mass in mine based on improved fuzzy comprehensive evaluation method[J].Metal Mine,49(7):53-58.
Zeng Taorui, Wang Linfeng, Weng Qineng,2019.Evaluation model of surrounding rock quality based on ideal point method and combination weighting[J].Journal of Chongqing University of Technology(Natural Science),33(10):79-85.
Zhang Weizhong, Yuan Wei, Kang Qinrong,et al,2023.Quality evaluation of tunnel surrounding rock in karst area based on comprehensive weight-fuzzy matter-element method[J].Gold Science and Technology,31(3):487-496.
Zhang Zhongting, Jing Feng, Yang Heli,2009.Practical Rock Mechanics for Engineering[M].Beijing:China Water Resources and Hydropower Press.
Zhao Guoyan, Zhu Xubo, Su Long,et al,2012.Research on extension evaluation of rock quality for underground mine based on game theory[J].Mining Research and Development,32(1):12-16,54.
Zhu Xubo,2012.Study of Underground Metal Mine Rock Quality Evaluation and Stope Structure Parameter Optimization[D].Changsha:Central South University.
曹琛,李会中,陈剑平,等,2017.基于组合赋权法与云模型坝基岩体质量评价[J].东北大学学报(自然科学版),38(11):1643-1647.
曹文贵,张永杰,2006.地下结构岩体质量分类的变权重二级模糊综合评判方法研究[J].岩石力学与工程学报,25(8):1612-1618.
柴乃杰,周文梁,2023.基于优化组合权模糊可变集的坝基岩体质量分级[J].吉林大学学报(地球科学版),53(2):514-525.
陈俊池,2014.基于岩体质量分级的采场稳定性分析及支护技术研究[D].沈阳:东北大学.
陈懋,姚锡文,许开立,2022.基于 AHP-EWM-云模型的金属矿井突水危险性评价[J].有色金属工程,12(11):102-110.
郭彬,薛希龙,徐敏,2011.改进层次聚类法在矿山岩体分级中的应用[J].金属矿山,40(11):14-19.
贺怀建,白世伟,陈健,2002.岩土工程专家系统中的推理及其应用[J].岩石力学与工程学报,21(8):1239-1242.
胡建华,郭萌萌,周坦,等,2021.基于改进迁移学习算法的岩体质量评价模型[J].黄金科学技术,29(6):826-833.
康志强,周辉,冯夏庭,等,2007.大型岩质边坡岩体质量的可拓学理论评价[J].东北大学学报(自然科学版),28(12):1770-1774.
李垂泉,2020.地下空间岩体质量评价及围岩稳定性分析[D].南京:南京理工大学.
梁桂兰,徐卫亚,谈小龙,2010.基于熵权的可拓理论在岩体质量评价中的应用[J].岩土力学,31(2):535-540.
刘艳章,盛建龙,葛修润,等,2007.基于岩体结构面分布分形维的岩体质量评价[J].岩土力学,31(5):971-975.
邱道宏,陈剑平,阙金声,等,2008.基于粗糙集和人工神经网络的洞室岩体质量评价[J].吉林大学学报(地球科学版),38(1):86-91.
肖云华,王清,陈剑平,2009.基于优化技术的权重计算方法在岩体质量评价中的应用[J].岩土力学,30(9):2686-2690.
徐先锋,邢鹏飞,王岁红,等,2022.基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J].黄金科学技术,30(5):704-712.
尹会永,赵涵,徐琳,等,2020.岩体质量分级的改进模糊综合评价法[J].金属矿山,49(7):53-58.
曾韬睿,王林峰,翁其能,2019.基于理想点法与组合赋权的围岩质量评价模型[J].重庆理工大学学报(自然科学),33(10):79-85.
张卫中,袁威,康钦容,等,2023.基于综合权重—模糊物元法的岩溶地区隧道围岩质量评价[J].黄金科学技术,31(3):487-496.
张忠亭,景锋,杨和礼,2009.工程实用岩石力学[M].北京:中国水利水电出版社.
赵国彦,朱旭波,苏龙,等,2012.基于博弈论的地下矿山岩体质量可拓评价研究[J].矿业研究与开发,32(1):12-16,54.
中华人民共和国水利部,2015. 工程岩体分级标准: [S].北京:中国计划出版社.
朱旭波,2012.地下金属矿岩体质量评价与采场结构参数优化研究[D].长沙:中南大学.
[1] 赵国彦, 胡凯译, 李洋, 刘雷磊, 王猛. 基于BWO-RF模型的岩体质量评价方法[J]. 黄金科学技术, 2024, 32(2): 270-279.
[2] 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712.
[3] 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833.
[4] 戚伟,李威,李振阳,赵国彦. 基于CRITIC-CW法的地下矿岩体质量评价[J]. 黄金科学技术, 2020, 28(2): 264-270.
[5] 黄锐,曾超,闫泽正. 岩体节理面三维网络模拟方法构建与应用[J]. 黄金科学技术, 2018, 26(1): 40-48.
[6] 胡建华,艾自华. 基于最优组合赋权的地下矿山岩体质量可拓评价模型[J]. 黄金科学技术, 2017, 25(4): 39-45.
[7] 江飞飞,李向东,盛佳,张彩青. 软弱破碎岩体工程地质调查与质量评价[J]. 黄金科学技术, 2016, 24(3): 94-99.
[8] 吴肖坤,刘敦文,江帆,唐洋,杨光,杨晨. 基于特征值域的可拓学理论的工程岩体质量评价[J]. 黄金科学技术, 2015, 23(2): 68-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!