img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (1): 82-90.doi: 10.11872/j.issn.1005-2518.2024.01.088

• 采选技术与矿山管理 • 上一篇    下一篇

基于PEMD-MPE算法的露天矿爆破振动信号降噪方法

代树红1(),张战军1(),柳凯2,郑昊1,孙清林1   

  1. 1.辽宁工程技术大学力学与工程学院,辽宁 阜新 123000
    2.阜新矿业(集团)有限责任公司恒大煤矿,辽宁 阜新 123000
  • 收稿日期:2023-06-12 修回日期:2023-10-15 出版日期:2024-02-29 发布日期:2024-03-22
  • 通讯作者: 张战军 E-mail:Dsh3000@126.com;1246853251@qq.com
  • 作者简介:代树红(1978-),男,辽宁阜新人,教授,从事实验力学研究工作。Dsh3000@126.com
  • 基金资助:
    国家自然科学基金重点项目“乌海能源有限责任公司五虎山煤矿爆破震动评价”(U183920051);辽宁省教育厅基础项目“乌海能源有限责任公司五虎山煤矿爆破震动评价”(LJ2019JL006);辽宁省高等学校创新人才“乌海能源有限责任公司五虎山煤矿爆破震动评价”(LR2019031)

Noise Reduction Method of Open-pit Blasting Vibration Signal Based on PEMD-MPE Algorithm

Shuhong DAI1(),Zhanjun ZHANG1(),Kai LIU2,Hao ZHENG1,Qinglin SUN1   

  1. 1.School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
    2.Hengda Coal Mine of Fuxin Mining(Group)Co. , Ltd. , Fuxin 123000, Liaoning, China
  • Received:2023-06-12 Revised:2023-10-15 Online:2024-02-29 Published:2024-03-22
  • Contact: Zhanjun ZHANG E-mail:Dsh3000@126.com;1246853251@qq.com

摘要:

为了去除露天矿山爆破振动信号中混入的噪声成分,提出了一种基于PEMD-MPE算法的降噪方法。该算法通过自适应性正交经验模态分解(PEMD)得到完全正交的本征模态函数(IMF)分量,然后对各个IMF分量进行多尺度排列熵(MPE)的随机性检测,成功确定其中的噪声分量并将其去除。采用该算法对实测的露天矿山爆破振动信号进行降噪处理。结果表明:相比EMD-MPE和EEMD-MPE算法,PEMD-MPE算法的信噪比分别提高了3.520 dB和1.107 dB,且重构标准差和均方根误差最小,说明该算法不仅能够有效去除爆破振动信号中的噪声成分,还能有效保留真实信号。

关键词: 露天矿山, 爆破振动, 振动信号, 降噪, PEMD-MPE算法, AOK时频技术

Abstract:

In order to remove the noise components mixed in the blasting vibration signals of open-pit mine,a noise reduction method based on the PEMD-MPE algorithm was proposed.This algorithm obtains a completely orthogonal Intrinsic Mode Function (IMF) components through Adaptive Orthogonal Empirical Mode Decomposition (PEMD).Subsequently,it performs a randomness test on the IMF components and calculates its Mean Power Entropy (MPE).Finally,based on a preset entropy threshold of 0.6,it determines whether a component is noise.If the obtained MPE is greater than 0.6,the component is identified as a noise component and needs to be removed,thus achieving the purpose of noise recluction.Applying this algorithm to denoise measured open-pit mining explosion vibration signals,the results indicate that compared to the EMD-MPE and EEMD-MPE algorithms,the proposed algorithm improves the signal-to-noise ratio by 3.520 dB and 1.107 dB,respectively.It exhibits the best denoising effect,with the smallest reconstruction standard deviation and root mean square error,providing better fidelity to the original signal.Using Adaptive Optimal Kernel (AOK) time-frequency analysis technology to analyze the signal waveforms before and after denoising,a comparison reveals consistent main frequencies.Throughout the denoising process,peak energy and energy in the main frequency band (0~300 Hz) do not show a significant decrease.This indicates that the PEMD-MPE algorithm,while preserving the authenticity of the real signal,more effectively removes noise components.

Key words: open-pit mine, blasting vibration, vibration signal, noise reduction, PEMD-MPE algorithm, AOK time-frequency technology

中图分类号: 

  • TD235.1

图1

PEMD-MPE算法降噪流程图"

图2

爆破监测点分布图"

图3

监测点示意图"

图4

原始爆破信号图"

图5

IMF分量信号图"

表1

本征模态函数分量的MPE均值"

分量MPE均值分量MPE均值
IMF10.2452IMF50.7584
IMF20.3278IMF60.7916
IMF30.4014IMF70.8706
IMF40.5326IMF80.9023

图6

降噪后的爆破振动信号图"

图7

原始信号(a)和去噪信号(b)频谱图"

图8

降噪前后信号对比"

表2

各算法爆破振动信号降噪效果指标"

原始

信号

降噪算法信噪比ξ/dB均方根 误差ε重构标准差ESD
s1EMD-MPE算法22.5120.02510.0203
EEMD-MPE算法24.9250.01920.0304
PEMD-MPE算法26.0320.01870.0178
s2EMD-MPE算法21.4270.02910.0241
EEMD-MPE算法24.8560.02430.0284
PEMD-MPE算法27.0420.01790.0168
s3EMD-MPE算法22.6150.02870.0235
EEMD-MPE算法25.0120.02230.0297
PEMD-MPE算法26.7830.01680.0154
Ali M, Khan A, Rehman N,2017.Hybrid multiscale wind speed forecasting based on variational mode decomposition[J].International Transactions on Electrical Energy Systems,28(1):2447-2466.
Cao Ying, Duan Yubo, Liu Jicheng,et al,2016.Multiscale morpholgical filter modal aliasing suppression method[J].Electric Machies and Control,20(9):110-116.
Chen G A, Li Q, Li D,et al,2019.Main frequency band of blast vibration signal based on wavelet packet transform[J].Applied Mathematical Modelling,74:569-585.
Chen Renxiang, Tang Baoping, Ma Jinghua,2012.Adaptive noise reduction method for vibration signal based on EEMD[J].Journal of Vibration and Shock,31(15):82-86.
Chen Weixing, Sun Xixi,2022.Research on sparse total variational denoising algorithm for OVMD-MPE group[J].Acta Metrology Sinica,43(1):48-56.
Deng Hongwei, Shen Yipeng,2021.Noise reduction method of micoseismic signal based on variational mode decomposition and particle swarm arithmetic[J].Mining and Metallurgical Engineering,41(1):7-10.
Fu Xiaoqiang, Zhang Renwei, Lei Zhen,et al,2020.Trend term and noise elimination method of blasting signal in coal mine vertical shaft[J].Journal of Lanzhou Institute of Technology,27(1):57-62.
Jia Bei, Ling Tianlong, Hou Shijun,et al,2020.Application of variational mode decomposition in the removal of trend term of blasting signal[J].Explosion and Shock,40(4):123-131.
Jiang X L, Wang F F, Yang H,et al,2018.Dynamic response of shallow-buried tunnels under asymmetrical pressure distributions[J].Journal of Testing and Evaluation,46(4):1574-1590.
Li Xibing, Zhang Yiping, Zuo Yujun,et al,2006.EMD filtering and noise cancellation of rock blasting vibration signal[J].Journal of Central South University(Natural Science Edition),(1):150-154.
Liu Xiaoyan, Jia Mingtao,2015.Identification and positioning of urban underground pipelines based on improved EMD-wavelet threshold combined denoising[J].China Safety Science and Technology,11(6):56-62.
Ooms K, Gildea T, Azzato E,et al,2022.Molecular testing in malignant pleural effsion (MPE) samples from patients with non-small cell lung carcinoma (NSCLC)[J].Journal of the American Society of Cytpathology,11(6):S21-S22.
Peng Y, Liu Y, Zhang C,et al,2021.A novel denoising model of underwater drilling and blasting vibration signal based on CEEMDAN[J].Arabian Journal for Science and Engineering,46(5):4857-4865.
Peng Yaxiong, Liu Guangjin, Su Ying,et al,2022.Research on noise reduction method of mine blasting seismic wave signal based on adaptive VMD-MPE algorithm[J].Journal of Vibration and Shock,41(13):135-141.
Wang F F, Jiang X L, Niu J Y,2017.The large-scale shaking table model test of the shallow-bias tunnel with a small cleardistance[J].Geotechnical and Geological Engineering,35(3):1093-1110.
Wu Z, Huang N E,2009.Ensemble empirical mode decomposition:A noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,1(1):1-41.
Xie Quanmin,2011.Application of second-generation wavelet packet transform in denoising analysis of blasting vibration signal[J].Enineering Blasting,17(3):21-24.
Xu Hongbin, Li Shulin, Chen Jijing,2012.Research on denoising method of microseismic monitoring signal of largescale rock mass structure based on wavelet transform[J].Acta Seismosinica,34(1):85-96.
Yi Wenhua, Liu Liansheng, Yan Lei,et al,2020.Denoising of blasting vibration signal based on improved EMD algorithm[J].Explosion and Shock,40(9):77-87.
Zhang Jiancai, Gao Junwei,2019.Fault diagnosis of rolling bearings based on variational mode decomposition and multi-scale arrangement entropy[J].Noise and Vibration Control,39(6):181-186.
Zhang Yuanjuan, Kong Dezeng,2019.Study on the influence of different lithology on blasting vibration effect[J].Mining and Metallurgical Engineering,39(5):6-8.
Zhao Mingsheng, Liang Kaishui, Luo Yuanfang,et al,2011.Application of EEMD in denoising of blasting vibration signal[J].Blasting Journal,28(2):17-20,59.
Zheng Jinde, Cheng Junsheng, Yang Yu,2013.Research on improved EEMD algorithm and its application [J].Journal of Vibration and Shock,32(21):21-26,46.
曹莹,段玉波,刘继承,等,2016.多尺度形态滤波模态混叠抑制方法[J].电机与控制学报, 20(9):110-116.
陈仁祥,汤宝平,马婧华,2012.基于EEMD的振动信号自适应降噪方法[J].振动与冲击,31(15):82-86.
陈维兴,孙习习,2022.OVMD-MPE群稀疏全变分去噪算法研究[J].计量学报,43(1):48-56.
邓红卫,申一鹏,2021.基于变分模态分解和粒子群算法的微震信号降噪方法[J].矿冶工程,41(1):7-10.
付晓强,张仁巍,雷振,等,2020.煤矿立井爆破信号趋势项和噪声消除方法[J].兰州工业学院学报,27(1):57-62.
贾贝,凌天龙,侯仕军,等,2020.变分模态分解在爆破信号趋势项去除中的应用[J].爆炸与冲击,40(4):123-131.
李夕兵,张义平,左宇军,等,2006.岩石爆破振动信号的EMD滤波与消噪[J].中南大学学报(自然科学版),(1):150-154.
刘晓艳,贾明涛,2015.基于改进EMD—小波阈值联合去噪的城市地下管线识别与定位[J].中国安全生产科学技术,11(6):56-62.
彭亚雄,刘广进,苏莹,等,2022.基于自适应VMD-MPE算法的矿山爆破地震波信号降噪方法研究[J].振动与冲击,41(13):135-141.
谢全民,2011.二代小波包变换在爆破振动信号去噪分析中的应用[J].工程爆破,17(3):21-24.
徐宏斌,李庶林,陈际经,2012.基于小波变换的大尺度岩体结构微震监测信号去噪方法研究[J].地震学报,34(1):85-96.
易文华,刘连生,闫雷,等,2020.基于EMD改进算法的爆破振动信号去噪[J].爆炸与冲击,40(9):77-87.
张建财,高军伟,2019.基于变分模态分解和多尺度排列熵的滚动轴承故障诊断[J].噪声与振动控制,39(6):181-186.
张袁娟,孔德增,2019.不同岩性对爆破振动效应影响研究[J].矿冶工程,39(5):6-8.
赵明生,梁开水,罗元方,等,2011.EEMD在爆破振动信号去噪中的应用[J].爆破,28(2):17-20,59.
郑近德,程军圣,杨宇,2013.改进的EEMD算法及其应用研究[J].振动与冲击,32(21):21-26,46.
[1] 李振阳, 张宝岗, 熊信, 杨承业, 白玉奇. 基于PSO-XGBoost的露天矿山PPV预测模型研究[J]. 黄金科学技术, 2024, 32(4): 620-630.
[2] 李祥龙, 余林, 黄原明, 陈浩, 赵艳伟. 基于VMD-HHT的井下预裂爆破振动效应分析[J]. 黄金科学技术, 2024, 32(3): 501-510.
[3] 海龙, 冯丽鑫, 谭世林, 吕勇博. 根土复合体加固露天矿山排土场边坡研究[J]. 黄金科学技术, 2023, 31(6): 911-918.
[4] 邓红卫, 罗亮. 基于SMA算法优化随机森林的PPV预测模型[J]. 黄金科学技术, 2023, 31(4): 624-634.
[5] 王鹏飞,毕林,王李管. 露天矿无人驾驶矿卡速度规划研究[J]. 黄金科学技术, 2022, 30(3): 460-469.
[6] 吴钦正,李润然,李桂林,李金平,尹延天,徐帅. 基于JKSimBlast软件的露天矿爆破毫秒延期时间优化[J]. 黄金科学技术, 2021, 29(6): 854-862.
[7] 李萧翰,刘科伟,杨家彩,李旭东. 不同地应力下爆破振动效应分析[J]. 黄金科学技术, 2019, 27(2): 241-248.
[8] 张二洋,陈建宏. 基于Surpac矿山设计软件及虚幻引擎实现的矿山虚拟现实漫游系统[J]. 黄金科学技术, 2017, 25(4): 93-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!