img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (2): 241-257.doi: 10.11872/j.issn.1005-2518.2024.02.163

• 矿产勘查与资源评价 • 上一篇    下一篇

物化遥综合找矿方法在西藏隆子县拉九地区的应用

娄元林1,2,3(),钱建利4(),朱志平5,巴永5,杨明龙5,杨桃6   

  1. 1.中国地质调查局长沙自然资源综合调查中心,湖南 长沙 410600
    2.中国地质科学院矿产资源研究所,北京 100037
    3.中国地质大学(北京),北京 100083
    4.中国地质调查局西安矿产资源调查中心,陕西 西安 710100
    5.中国地质调查局昆明自然资源综合调查中心,云南 昆明 650100
    6.常德职业技术学院,湖南 常德 415000
  • 收稿日期:2023-03-31 修回日期:2023-11-30 出版日期:2024-04-30 发布日期:2024-05-21
  • 通讯作者: 钱建利 E-mail:420418599@qq.com;1228143523@qq.com
  • 作者简介:娄元林(1988-),男,湖南常德人,高级工程师,从事矿产地质调查及矿产勘查工作。420418599@qq.com
  • 基金资助:
    中国地质调查局地质调查项目“西藏古堆地区金锑多金属矿产远景调查”(1212011121236);“西藏哲古—日当一带铅锌锑多金属矿产调查评价”(12120114083501);“华东—华南地区金矿资源潜力动态评价”(DD20230376);“湖南怀化—邵阳金矿重点调查区调查评价”(DD20230386)

Application of Integrated Geophysical,Geochemical and Remote Sensing Prospecting Methods in Lajiu Area,Longzi County,Tibet

Yuanlin LOU1,2,3(),Jianli QIAN4(),Zhiping ZHU5,Yong BA5,Minglong YANG5,Tao YANG6   

  1. 1.Changsha General Survey of Natural Resources Center, China Geological Survey, Changsha 410600, Hunan, China
    2.Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
    3.China University of Geosciences(Beijng), Beijing 100083, China
    4.Xi’an Mineral Resources Survey Center, China Geological Survey, Xi’an 710100, Shaanxi, China
    5.Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming 650100, Yunnan, China
    6.Changde Vocational Technical College, Changde 415000, Hunan, China
  • Received:2023-03-31 Revised:2023-11-30 Online:2024-04-30 Published:2024-05-21
  • Contact: Jianli QIAN E-mail:420418599@qq.com;1228143523@qq.com

摘要:

西藏隆子县拉九地区成矿地质条件优越,寻找金多金属矿的潜力较大。在综合分析区域地质背景的前提下,通过遥感地质解译研判成矿有利部位,确定拉九地区为成矿预测Ⅳ区,利用1/5万水系沉积物测量进行扫面,圈定了多处化探综合异常。选择在拉九异常(HS-13-B2)内,开展1/1万土壤地球化学剖面测量、壤中1/1万汞气测量及激电中梯测量等大比例尺化探物探工作,初步圈定了2处化探综合异常,发现3个极化体和2处视极化率异常,优选其中有利的成矿靶区,经异常查证和槽探工程揭露,发现3条金矿矿化蚀变带,实现了找矿新发现。基于物化遥综合找矿信息初步建立了以矿床地质—地球化学—地球物理—遥感特征为标志的综合信息找矿模型。实践证明,运用物化遥综合找矿方法可极大地提高找矿效率,该工作为今后在高原山区开展多金属找矿勘查提供了参考。

关键词: 物化遥特征, 综合找矿方法, 金矿, 综合信息找矿模型, 拉九地区, 西藏

Abstract:

The Lajiu area in Longzi County,Tibet,has superior metallogenic geological conditions and great potential for prospecting for gold polymetallic deposits.On the premise of comprehensive analysis of the regional geological background,the favorable position for mineralization was judged by remote sensing geo-logical interpretation,and the Lajiu area was identified as Zone Ⅳ for mineralization prediction. The 1∶50 000 stream sediment survey was used to sweep the surface,and multiple geochemical comprehensive anomalies were delineated. Then other large-scale geophysical and geochemical exploration work such as 1∶10 000 soil geochemical profile measurement,mercury vapor in soil and induced polarization medium gradient survey were carried out within the Lajiu anomaly(HS-13-B2).Two geochemical comprehensive anomalies,three polarizable bodies and two apparent polarizability anomalies were delineated,among which favorable mineralization target areas were selected.Anomaly verification and trenching engineering reveal that three gold mineralized alteration zones had been found,which had realized new discovery of ore prospecting. Finally,a comprehensive information prospecting model based on geological,geophysical,geochemical and remote sensing charac-teristics had been preliminarily established.The practice has proved that the application of integrated geo-physical,geochemical and remote sensing prospecting methods can greatly improve the ore prospecting rate,and this work provides a reference for the future development of polymetallic prospecting and exploration in plateau mountainous areas.

Key words: geophysical-geochemical-remote sensing characteristics, integrated prospecting method, gold deposit, comprehensive information prospecting model, Lajiu area, Tibet

中图分类号: 

  • P618.51

图1

藏南古堆—隆子地区区域构造纲要图(a)(修改自娄元林等,2022)和拉九地区地质简图(b)1.第四系;2.上三叠统涅如组三段;3.上三叠统涅如组二段;4.古生界曲德贡岩组上岩段;5.始新世二云二长花岗岩;6.晚白垩世辉绿岩;7.砂岩条带;8.伸展拆离断层;9.逆冲推覆断层;10.性质不明断层;11.地质界线;12.产状"

图2

拉九地区遥感构造解译结果及矿点分布图(修改自娄元林,2016)a-卓木日铅锌锑多金属矿;b-达拉金矿;c-那穷金锑矿;d-宁拉金矿;e-张巴砸铜矿;f-邦卓玛金矿;g-拉九金矿;h-多巴金矿;i-卓日铅锌锑多金属矿;j-茶嘎铯矿;k-古堆锑矿;l-赛龙寺金矿;m-克鲁浦锑矿;n-那嘎迪金矿;o-恰嘎锑矿;p-恰嘎铅锌矿;q-索月锑铅锌多金属矿;r-柯月锑铅锌多金属矿;s-扎西康铅锌锑多金属矿;t-桑日则锑铅锌多金属矿;u-则当锑铅锌多金属矿;v-夏隆岗铅矿;1.铁染一级异常;2.铁染二级异常;3.铁染三级异常;4.黏土化异常;5.碳酸盐化异常;6.断层;7.滑脱断层;8.环形构造;9.找矿远景区及编号;10.铅锌锑矿;11.铅锌矿;12.铅矿;13.锑矿;14.金锑矿;15.金矿;16.铜矿;17.铯矿;18.拉九研究区"

图3

拉九地区1/5万水系沉积物测量HS-13异常剖析图Q-第四系;T3n3-上三叠统涅如组三段;T3n2-上三叠统涅如组二段;T3n1-上三叠统涅如组一段;Pzq.2-古生界曲德贡岩组上岩段;E2ηγ-始新世二云二长花岗岩;K1βμ-晚白垩世辉绿岩"

图4

拉九地区物化探异常综合地质图Q-第四系;T3n3-上三叠统涅如组三段;T3n2-上三叠统涅如组二段;Pzq.2-古生界曲德贡岩组上岩段;E2ηγ-始新世二云二长花岗岩;K1βμ-晚白垩世辉绿岩; 1.伸展拆离断层;2.逆冲推覆断层;3.性质不明断层;4.地质界线;5.1/5万水系沉积物Au异常及编号;6.1/1万地球化学剖面测量Au异常及编号;7.1/1万地球化学剖面测量As异常及编号;8.1/1万地球化学剖面测量Sb异常及编号;9.1/1万地球化学剖面测量Pb异常及编号;10.1/1万地球化学剖面测量Sn异常及编号;11.1/1万地球化学剖面测量组合异常及编号;12.1/1万激电中梯测量剖面位置、极化体及编号;13.探槽及编号;14.矿化蚀变带及编号"

表1

拉九地区土壤剖面测量异常特征"

异常编号异常下限异常面积/km2形状浓度分带异常值/(×10-6衬度规模/km2异常点数/个
最高值平均值
Au-1250.25不规则状外、中、内14353.342.130.5395
Au-2250.82不规则状外、中、内43160.842.431.99317
Au-3250.09不规则状17047.921.920.1827
Au-4250.20条带状84.6034.981.400.2886
Au-5250.26不规则状19742.821.710.45101
As-13200.05条带状1 015509.511.590.0820
As-23200.06条带状655.84395.671.240.0814
As-33200.04条带状外、中920.62655.372.050.0817
As-43200.03椭圆状487.93378.061.180.039
As-53200.01椭圆状413.13355.651.110.015
Pb-1600.03椭圆状64.4562.121.040.0310
Pb-2600.04条带状73.3267.101.120.049
Pb-3600.01椭圆状85.7966.211.100.027
Sn-190.01椭圆状20.7314.171.570.025
Sn-290.04椭圆状23.6812.621.400.0512
Sn-390.05条带状18.5813.921.550.0713
Sb-170.07条带状外、中22.3016.522.360.1723
Sb-270.09条带状13.3810.161.450.1232
Sb-370.13不规则状外、中22.9410.281.470.1948

图5

拉九地区主要异常元素变异系数"

表2

拉九地区土壤剖面测量组合异常评序表"

组合异常编号面积/km2单元素异常单元素异常数单元素异常(NAP)之和评序
HT-10.39Au-2,Sb-2,Pb-2,Sn-2,As-1,As-362.361
HT-20.19Au-5,Sb-3,As-430.682

图6

拉九地区汞气测量等值线图1.土壤地球化学剖面测量Au异常及编号;2.土壤地球化学剖面测量As异常及编号;3.土壤地球化学剖面测量Sb异常及编号;4.矿化蚀变带及编号;5.极化体及编号"

表3

拉九地区主要岩(矿)石电性参数"

岩(矿)石类型标本数量/件电阻率ρs/(Ω?m)极化率ηs/%
最小值最大值平均值最小值最大值平均值
粉砂质绢云母板岩111101 3315373.016.48.66
岩屑杂砂岩107653 5891 5971.15.42.88
页岩1215646830.11.00.37
辉绿岩136784 2301 7120.34.31.23
石英闪长岩105163 5311 8180.45.22.28
金、锑矿化矿石82434553233.6914.5611.67

图7

拉九地区激电中梯视极化率剖面平面图及等值线异常图(a)视极化率剖面平面图;(b)视极化率等值线异常图1.激电中梯剖面点号/线号;2.视极化率等值线及数值;3.视极化率异常及编号;4.矿化蚀变带及编号;5.极化体及编号"

表4

拉九地区激电中梯异常特征"

异常编号形态特征地质特征异常分类
ηs-1位于工作区中部,研究区北东部,呈条带状分布,长约800 m,宽约150 m,异常北部未封闭。视极化率异常下限为3.9%,最大值为7.3%,平均值为6%,极化较强,视电阻率平均值为350 Ω?m出露岩性为上三叠统涅如组(T3n)灰色粉砂质绢云母板岩夹中厚层状细粒岩屑杂砂岩乙3
ηs-2位于工作区中部,研究区南东部,串珠状分布,长约300 m,宽约100 m,异常南部未封闭。视极化率异常下限为3.9%,最大值为7.1%,平均值为5.5%,极化较强,视电阻率平均值为300 Ω?m出露岩性为上三叠统涅如组(T3n)灰色粉砂质绢云母板岩夹中厚层状细粒岩屑杂砂岩丙2

表5

拉九地区金多金属矿综合信息找矿模型"

找矿标志分类找矿标志描述内容要素分类
地质背景大地构造位置喜马拉雅板片北缘,雅鲁藏布缝合带(YS)与藏南拆离系(STDS)的过渡地带必要
地层上三叠统—下白垩统炭质板岩和粉砂质板岩组成的黑色岩系必要
构造康马—隆子褶冲带中,EW和NW向深断裂及其次级断裂必要
岩浆岩(脉岩)喜山期花岗岩,规模较小的中基性脉岩(辉绿岩)、火山岩和次火山岩重要
矿床地质控矿构造近EW向压扭断裂带和NE、NW向剪切断裂裂隙或破碎带及其构造复合部位重要
矿石矿物金属矿物主要为毒砂、黄铁矿、自然金、方铅矿和辉锑矿等,非金属矿物主要为石英必要
矿石组构不等粒粒状变晶和碎裂结构;条带状、孔洞、网脉状和浸染状构造次要
矿化蚀变硅化、绿泥石化、绢云母化、碳酸盐化、黏土化和高岭土化必要
氧化作用地表露头出现褐铁矿或锑华次要
地球物理视电阻率低电阻,视电阻率值ΔT≤500 Ω·m重要
视极化率高极化率,视极化率值ηs≥2.2%重要
地球化学矿区(1/5万水系沉积物)以Au-As-W-Mo-Pb-Sn-Bi为主的地球化学元素异常组合,具较好的浓度分带特征重要
矿床(1/1万土壤地球化学剖面)以Au-As-Sb-Pb-Sn为主的地球化学元素异常组合,具高值异常带重要
矿体(1/1万汞气测量)汞气含量背景值小于等于310 ng/m3,金矿化体上方汞气含量大于等于620 ng/m3重要
遥感特征构造特征线形—线环构造复合交会或环形构造发育的区域重要
蚀变异常信息铁染和羟基各级蚀变异常信息套合重要
Cai Fulong, Ding Lin, Wang Houqi,et al,2013.Provenance of the Upper Paleocene to Early Eocene strata,Gyanze,South Tibet:Implications for early Himalaya thickening[J].Chinese Journal of Geology,48(2):435-448.
Chi Jiang,2018.Geological characteristics and ore controlling factors of the Zangnan River[J].World Nonferrous Metals,19:133,135.
Fan Wenxin, Li Guangming, Liang Shengxian,2021.Electrical characteristics of ore-controlling structures and prospecting prediction of Zhaxikang mining area,Tibet[J].Journal of Jilin University(Earth Science Edition),51(6):1709-1719.
Geng Xinxia, Yang Jianmin, Zhang Yujun,et al,2008.Application of RS technology to geology and ore deposit research and the development prospect[J].Contributions to Geology and Mineral Resources Research,23(2):89-93,139.
Guo Na, Chen Jianping, Tang Juxing,2008.Remote sensing information extraction of mineralizing anomaly in the Dongda area of Eastern Tibet[J].Geology and Prospecting,44(4):69-73.
Hou Zengqian, Mo Xuanxue, Yang Zhiming,et al,2006a.Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau:Tectonic setting,tempo-spatial distribution and ore deposit types[J].Geology in China,23(2):340-351.
Hou Zengqian, Pan Guitang, Wang Anjian,et al,2006b.Metallogenesis in Tibetan collisional orogenic belt:Ⅱ.Mineralization in late-collisional transformation setting[J].Mineral Deposits,25(5):521-543.
Hou Zengqian, Qu Xiaoming, Yang Zhusen,et al,2006c.Metallogenesis in Tibetan collisional orogenic belt:Ⅲ.Mineralization in post-collisional extension setting[J].Mineral Deposits,25(6):629-651.
Hou Zengqian, Yang Zhusen, Xu Wenyi,et al,2006d.Metallogenesis in Tibetan collisional orogenic belt:Ⅰ.Mineralization in main collisional orogenic setting[J].Mineral Deposits,25(4):337-358.
Hu Kewei, Chen Wu, Dong Fuquan,et al,2016.A study of minerogenetic series and metallogenic lineage of Gudui area in Tibet and their implications for prospection[J].Mineral Resources and Geology,30(5):761-767.
Huang Xiaodong,2011.Study on Metallogenic Regularity and Ore-Prospecting Direction of Gyantse-Lhunze Gold-Antimony Metallogenic Belt in the South Tibetan Detachment System[D].Chengdu:Chengdu University of Technology.
Huang Yong, Liang Wei, Zhang Linkui,et al,2018.The initial break-up between Tethyan-Himalaya and Indian terrane:Evidences from Late Cretaceous OIB-type basalt in Southern Tibet[J].Earth Science,43(8):2651-2663.
Kuang Zhong, Xiong Xingguo, Huang Xinxin,et al,2022.Extraction of remote sensing geological information and prospecting prediction in Tinggong area,Gaize County,Tibet[J].Guizhou Geology,39(1):80-86.
Li Hongliang, Li Guangming, Zhang Zhi,et al,2016.Ore-controlling factors and prospecting prediction of Zhaxikang Pb-Zn polymetallic deposit,Southern Tibet[J].Metal Mine,45(10):103-108.
Li Songtao, Liu Jianzhong, Xia Yong,et al,2021.Tectono-geochemistry weak mineralization information extraction method and its application in the carlin-type gold accumulation area of southwestern Guizhou[J].Gold Science and Technology,29(1):53-63.
Liu Demin, Yang Weiran, Guo Tieying,2020.Discussion on Cenozoic tectonic development and dynamics in South Tibet[J].Earth Sciences Frontiers,27(1):194-203.
Lou Yuanlin,2016.Analysis on the Geochemical Characteristics and Prospecting of Zhegu-Gudui Area,Tibet[D].Beijing:China University of Geosciences(Beijing).
Lou Yuanlin, Chen Wu, Yang Tao,2019.Metallogenic model and prospecting pattern of the Bangzhuoma gold deposit in Longzi County,Tibet[J].Geological Bulletin of China,38(Supp.1):449-461.
Lou Yuanlin, Cheng Ming, Tang Yao,et al,2023.Geochemical characteristics,tectonic setting,and mineralization of magmatic rocks in Gudui area,Southern Tibet[J].Geoscience,37(2):353-374.
Lou Yuanlin, Tang Yao, Guo Wei,et al,2022.Geologic characteristics of the Naqiong Sb-Au deposit and prospecting prediction for Au-polymetallic deposits in Longzi County,Tibet[J].Journal of Geomechanics,28(3):406-416.
Nie Fengjun, Hu Peng, Jiang Sihong,et al,2005.Type and temporal-spatial distribution of gold and antimony deposits (prospects) in Southern Tibet,China[J].Acta Geologica Sinica,79(3):373-385.
Qi Xuexiang, Li Tianfu, Meng Xiangjin,et al,2008.Cenozoic tectonic evolution of the Tethyan Himalayan foreland fault-fold belt in southern Tibet,and its constraint on antimony-gold polymetallic minerogenesis[J].Acta Petrologica Sinica,24(7):1638-1648.
Qian Jianli, Xi Junsheng, Liu Bei,et al,2021.Geological characteristics and prospecting potential of Zhuomuri gold polymetallic deposit in Cuomei County,Tibet[J].Mineral Exploration,12(5):1221-1227.
Qian Jianli, Yu Jie, Chen Wu,et al,2015.The application of soils mercury gas measurement in Lajiu key inspection area,Longzi,Tibet[J].China Mining Magazine,24(Supp.2):92-95.
Qian Jianping, Wu Guihua, Chen Hongyi,2012.The application modern remote sensing technology to geology and ore exploration[J].Contributions to Geology and Mineral Resources Research,27(3):355-360.
Shi Yongzhi, Li Kaicheng,2014.The application of integrated geophysical and geochemical exploration methods to the prospecting for deep and concealed orebodies[J].Geophysical and Geochemical Exploration,38(5):910-915.
Wang Guohua, Jiang Jingye, Dong Yong,2002.The application of soil mercury vapor survey to the prospecting for concealed ore deposit in West Tianshan high and cold mountain areas[J].Geophysical and Geochemical Exploration,26(5):372-375.
Wang J M, Wu F Y, Rubatto D,et al,2018.Early Miocene rapid exhumation in southern Tibet:Insights from P-T-t-D-magmatism path of Yardoi dome[J].Lithos,304/305/306/307:38-56.
Wang Ruijun, Li Mingsong, Wang Bing,et al,2016.Secondary halo characteristics and prospecting potential of Ximole area in Inner Mongolia[J].Geophysical and Geochemical Exploration,40(2):310-317.
Wang Zuhong, Han Xianju, Liu Yinchun,et al,1996.A method of TM remote sensing data used in extracting gold mineralized alteration information[J].Gold Geology,2(3):47-51.
Wu Fuyuan, Wang Rucheng, Liu Xiaochi,et al,2021.New breakthroughs in the studies of Himalayan rare-metal mineralization[J].Acta Petrologica Sinica,37(11):3261-3276.
Xia Jun, Zhong Huaming, Tong Jingsong,et al,2005.Sedimentary facies and palaeogeography of the Luozha region in southern Xizang during the Jurassic and Cretaceous[J].Sedimentary Geology and Tethyan Geology,25(3):8-17.
Xu Yunpeng,2021.Analysis of ore-forming depth and exploration potential of gold-antimony polymetallic deposits in Gudui area,South Tibet[J].Mineral Resources and Geology,35(2):202-210.
Yang Lei, Ding Feng, Li Ying,et al,2019.Sedimentary characteristics and environmental evolution of the Jurassic Weimei Formation in Yamdrok region of Southern Tibet[J].Xinjiang Geology,37(3):401-407.
Yang Zhusen, Hou Zengqian, Gao Wei,et al,2006.Metallogenic characteristics and genetic model of antimony and gold deposits in South Tibetan detachment system[J].Acta Geologica Sinica,80(9):1377-1391.
Yin A,2006.Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry,exhumation history,and foreland sedimentation[J].Earth-Science Reviews,76:1-131.
Yuan He, Hong Xiuwei,2022.Zircon U-Pb ages,petrogenesis and tectonic setting of basic rocks in Gudui area,southern Tibet[J].Geological Bulletin of China,41(9):1589-1600.
Zhang Gangyang,2012.Metallogenic Model and Prospecting Potential in Southern Tibet Au-Sb Polymetallic Belt[D].Wuhan:China University of Geosciences(Wuhan).
Zhang Long, Sun Jianshuang, Ren Chuantao,et al,2023.Application of comprehensive geophysical and geochemical methods on the exploration of Duhuangling gold deposit in Jilin[J].Mineral Resources and Geology,37(2):309-316.
Zhang Tingbin, Zhong Kanghui, Yi Guihua,et al,2009.The extraction of remote sensing geological information and metallogenetic prediction of gold mineralized concentrate district in Wulonggou,East Kunlun Mountains[J].Geology and Exploration,45(4):444-449.
Zhang Wei, Ji Guosong, Liao Guozhong,et al,2021.Prospecting model and exploration evaluation method of “fault controlled” gold deposits in southwest Guizhou:A case study of Yata gold deposit[J].Acta Geologica Sinia,95(12):3961-3978.
Zhang Yu, Wei Junhao, Shi Wenjie,et al,2022.Soil geochemical anomaly information extraction and metallogenic prediction of the Buzhu gold(antimony)deposit in the Kangma County,south Tibet[J].Gold Science and Technology,30(1):1-18.
Zhang Z M, Ding H X, Dong X,et al,2022.The Mesozoic magmatic,metamorphic,and tectonic evolution of the eastern Gangdese magmatic arc,Southern Tibet[J].Geological Society of America Bulletin,134(7/8):1721-1740.
Zhang Z, Li G M, Zhang L K,et al,2020.Genesis of the Mingsai Au deposit,southern Tibet:Constraints from geology,fluid inclusion,40Ar /39Ar geochronology,H-O isotopes,and in situ sulfur isotope compositions of pyrite[J].Ore Geology Reviews,122:103488.
Zhang Zhi, Li Guangming, Zhang Linkui,2022.Exploration and research progresses of rare metals in Himalayan belt,Tibet[J].Sedimentary Geology and Tethyan Geology,42(2):176-188.
Zheng Youye, Ji Duo, Ma Guotao,et al,2007.Mineralization characteristics,discovery and age restriction of Chalapu hardrock gold deposit,Southern Tibet[J].Earth Science-Journal of China University of Geosciences,32(2):185-193.
Zheng Youye, Wang Da, Yi Jianzhou,et al,2022.Antimony mineralization and prospecting orientation in the North Himalayan Metallogenic Belt,Tibet[J].Earth Science Frontiers,29(1):200-230.
蔡福龙,丁林,王厚起,等,2013.特提斯喜马拉雅带江孜地区古近纪地层源区分析——对造山带早期地壳加厚的制约[J].地质科学,48(2):435-448.
池江,2018.藏南查拉普金矿地质特征及控矿因素分析[J].世界有色金属,19:133,135.
樊文鑫,李光明,梁生贤,2021.西藏扎西康铅锌多金属矿床控矿构造的电性特征及找矿预测[J].吉林大学学报(地球科学版),51(6):1709-1719.
耿新霞,杨建民,张玉君,等,2008.遥感技术在地质找矿中的应用及发展前景[J].地质找矿论丛,23(2):89-93,139.
郭娜,陈建平,唐菊兴,2008.藏东东达山地区遥感找矿地质异常提取方法研究[J].地质与勘探,44(4):69-73.
侯增谦,莫宣学,杨志明,等,2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质,23(2):340-351.
侯增谦,潘桂棠,王安建,等,2006b.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,25(5):521-543.
侯增谦,曲晓明,杨竹森,等,2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,25(6):629-651.
侯增谦,杨竹森,徐文艺,等,2006d.青藏高原碰撞造山带:I.主碰撞造山成矿作用[J].矿床地质,25(4):337-358.
胡可卫,陈武,董富权,等,2016.西藏古堆地区成矿系列、成矿谱系研究及其找矿意义[J].矿产与地质,30(5):761-767.
黄小东,2011.藏南拆离系江孜—隆子金—锑成矿带成矿规律与找矿方向研究[D].成都:成都理工大学.
黄勇,梁维,张林奎,等,2018.特提斯喜马拉雅—印度地体初始裂解:来自藏南地区晚白垩世OIB型玄武岩的证据[J].地球科学,43(8):2651-2663.
况忠,熊兴国,黄欣欣,等,2022.西藏改则亭贡地区遥感地质信息提取及找矿预测[J].贵州地质,39(1):80-86.
李洪梁,李光明,张志,等,2016.藏南扎西康铅锌多金属矿床控矿因素及找矿预测[J].金属矿山,45(10):103-108.
李松涛,刘建中,夏勇,等,2021.黔西南卡林型金矿聚集区构造地球化学弱矿化信息提取方法及其应用研究[J].黄金科学技术,29(1):53-63.
刘德民,杨巍然,郭铁鹰,2020.藏南地区新生代多阶段构造演化及其动力学的探讨[J].地学前缘,27(1):194-203.
娄元林,2016.西藏哲古—古堆地区地球化学特征及找矿前景分析[D].北京:中国地质大学(北京).
娄元林,陈武,杨桃,2019.西藏隆子县邦卓玛金矿床成矿模式与找矿模型[J].地质通报,38(增1):449-461.
娄元林,成明,唐侥,等,2023.藏南古堆地区岩浆岩岩石地球化学特征、构造环境分析及对成矿的响应[J].现代地质,37(2):353-374.
娄元林,唐侥,郭威,等,2022.西藏隆子县那穷锑金矿地质特征及找矿前景分析[J].地质力学学报,28(3):406-416.
聂凤军,胡朋,江思宏,等,2005.藏南地区金和锑矿床(点)类型及其时空分布特征[J].地质学报,79(3):373-385.
戚学祥,李天福,孟祥金,等,2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J].岩石学报,24(7):1638-1648.
钱建利,喜俊生,刘蓓,等,2021.西藏措美县卓木日金多金属矿地质特征及找矿潜力[J].矿产勘查,12(5):1221-1227.
钱建利,余杰,陈武,等,2015.壤中汞气测量在西藏隆子县拉九区中的应用[J].中国矿业,24(增2):92-95.
钱建平,伍贵华,陈宏毅,2012.现代遥感技术在地质找矿中的应用[J].地质找矿论丛,27(3):355-360.
时永志,李凯成,2014.综合物化探方法在地质找矿“攻深找盲”中的应用[J].物探与化探,38(5):910-915.
王国华,蒋敬业,董勇,2002.利用壤中汞气测量在西天山高寒山区寻找隐伏矿的研究[J].物探与化探,26(5):372-375.
王瑞军,李名松,汪冰,等,2016.内蒙古希莫勒地区次生晕特征及找矿潜力[J].物探与化探,40(2):310-317.
王祖洪,韩先菊,刘荫椿,等,1996.利用TM数据进行金矿化蚀变信息提取方法探讨[J].黄金地质,2(3):47-51.
吴福元,王汝成,刘小驰,等,2021.喜马拉雅稀有金属成矿作用研究的新突破[J].岩石学报,37(11):3261-3276.
夏军,钟华明,童劲松,等,2005.藏南洛扎地区侏罗、白垩纪岩相古地理特征[J].沉积与特提斯地质,25(3):8-17.
许云鹏,2021.藏南古堆地区金锑多金属矿床形成深度及找矿潜力分析[J].矿产与地质,35(2):202-210.
杨磊,丁枫,李颖,等,2019.西藏南部羊卓雍措地区晚侏罗世维美组沉积特征及环境演化[J].新疆地质,37(3):401-407.
杨竹森,侯增谦,高伟,等,2006.藏南拆离系锑金成矿特征与成因模式[J].地质学报,80(9):1377-1391.
袁和,洪秀伟,2022.藏南古堆地区基性岩锆石U-Pb年龄、岩石成因及构造背景[J].地质通报,41(9):1589-1600.
张刚阳,2012.藏南金锑多金属成矿带成矿模式与找矿前景研究[D].武汉:中国地质大学(武汉).
张龙,孙剑爽,任传涛,等,2023.物化探综合找矿方法在吉林杜荒岭金矿勘查中的应用[J].矿产与地质,37(2):309-316.
张廷斌,钟康惠,易桂花,等,2009.东昆仑五龙沟金矿集中区遥感地质信息提取与找矿预测[J].地质与勘探,45(4):444-449.
张伟,季国松,廖国忠,等,2021.黔西南“断控型”金矿床的找矿模式与勘探评价方法——以丫他金矿床为例[J].地质学报,95(12):3961-3978.
张宇,魏俊浩,石文杰,等,2022.藏南康马县布主金(锑)矿土壤地球化学异常信息提取及成矿预测[J].黄金科学技术,30(1):1-18.
张志,李光明,张林奎,2022.西藏喜马拉雅带稀有金属矿勘查与研究进展[J].沉积与特提斯地质,42(2):176-188.
郑有业,多吉,马国桃,等,2007.藏南查拉普岩金矿床特征、发现及时代约束[J].地球科学(中国地质大学学报),32(2):185-193.
郑有业,王达,易建洲,等,2022.西藏北喜马拉雅成矿带锑金属成矿作用及找矿方向[J].地学前缘,29(1):200-230.
[1] 苏力, 朱海军, 谷守江, 杨兴科, 赵翌辰, 孙雪平, 何虎军, 韩珂, 张玉瑜, 谭江, 谢愿龙, 张龙, 高立博. 宁夏海原西华山地区金矿床地质地球化学特征及成因分析[J]. 黄金科学技术, 2024, 32(2): 191-206.
[2] 张勇,李水平,荆鹏,冯攀. 河南嵩县九仗沟金矿床地球化学特征与勘查模式[J]. 黄金科学技术, 2024, 32(2): 258-269.
[3] 俞炳, 丁正江, 陈伟军, 李肖, 刘彩杰, 薛建玲, 曾庆栋, 范宏瑞, 吴金检, 张琪彬. 胶东西岭金矿床黄铁矿热电性特征及深部找矿意义[J]. 黄金科学技术, 2024, 32(2): 207-219.
[4] 张帅, 赵鑫, 彭祥玉, 王宇斌, 桂婉婷, 田家怡. 基于双隐含层BP神经网络的某金矿回收率预测研究[J]. 黄金科学技术, 2024, 32(1): 170-178.
[5] 王兴春, 邱海城, 李建平, 智庆全, 李华, 武军杰, 邓晓红, 吴琼. 辽东半岛五龙金矿外围电性特征及找矿意义[J]. 黄金科学技术, 2024, 32(1): 1-12.
[6] 史磊, 王西荣, 宁霄峰, 鹿峰宾, 许延波, 李亚楠. 山东南吕—欣木金矿床金的赋存状态及富集机制[J]. 黄金科学技术, 2024, 32(1): 41-54.
[7] 宋高瑞, 翟新伟, 王二腾, 武磊, 陈万峰, 郑菲菲, 王海东, 王金荣. 甘肃花牛山金矿床成矿流体性质及矿床成因[J]. 黄金科学技术, 2023, 31(6): 873-887.
[8] 杨玮, 邓博, 龙涛, 邓莎, 薛梦鸽, 方楠. 基于效果—效率的金矿绿色矿山建设综合评价研究[J]. 黄金科学技术, 2023, 31(6): 919-929.
[9] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[10] 张国栋, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿海底开采井下沉降特点及影响因素浅析[J]. 黄金科学技术, 2023, 31(5): 785-793.
[11] 许方颖, 邹艳红, 易卓炜, 杨福强, 毛先成. 基于非均衡数据的ADASYN-CatBoost测井岩性智能识别——以胶西北招贤金矿床为例[J]. 黄金科学技术, 2023, 31(5): 721-735.
[12] 陈国民, 杨洪英, 陈彦臻, 张广积. 金矿预氧化处理过程中砷的转化[J]. 黄金科学技术, 2023, 31(5): 865-872.
[13] 何玉龙, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿地面沉降特征及原因分析[J]. 黄金科学技术, 2023, 31(4): 605-612.
[14] 樊忠平, 张望, 王卫. 陕西省山阳—商南金矿成矿规律及找矿预测研究[J]. 黄金科学技术, 2023, 31(4): 560-579.
[15] 张顺,生显军,赵红浩. 玲珑金矿田108#脉支脉控矿模式研究及探矿成果[J]. 黄金科学技术, 2023, 31(3): 453-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[9] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[10] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .