img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (2): 280-289.doi: 10.11872/j.issn.1005-2518.2024.02.012

• 采选技术与矿山管理 • 上一篇    下一篇

恒湿环境下不同含水饱和度砂岩制备方法及压缩试验

付腾飞1(),朱德福2   

  1. 1.山西大学电力与建筑学院,山西 太原 030031
    2.太原理工大学原位改性采矿教育部重点实验室,山西 太原 030024
  • 收稿日期:2024-01-02 修回日期:2024-01-23 出版日期:2024-04-30 发布日期:2024-05-21
  • 作者简介:付腾飞(1992-),男,山西长治人,讲师,从事水环境下岩体蠕变研究工作。futengfei@sxu.edu.cn
  • 基金资助:
    国家自然科学基金项目“浅埋非充分垮落区下条—柱充填开采覆岩结构协调变形机制”(52174124);“浅埋非充分垮落区下开采覆岩结构联动失稳机理”(51904200)

Preparation Method and Compression Test of Sandstone with Different Water Saturation Under Constant Humidity Environment

Tengfei FU1(),Defu ZHU2   

  1. 1.School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030031, Shanxi, China
    2.Key Laboratory of In-situ Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2024-01-02 Revised:2024-01-23 Online:2024-04-30 Published:2024-05-21

摘要:

针对目前制备不同含水饱和度岩石试样存在的精度低和试样内部含水分布不均匀等问题,基于渗透技术和化学热力学原理,设计了一种恒湿环境下不同含水饱和度岩石试样制备装置,并通过核磁共振成像实验验证了该装置精确制备水分均匀分布岩石试样的合理性。同时,利用该装置开展了不同含水饱和度条件下砂岩常应变率压缩试验。结果表明:砂岩的单轴抗压强度和弹性模量均随着含水饱和度的增加而降低,随着围压的增大,试样砂岩压密阶段减弱,试样的变形经历弹脆性—弹塑性—应变硬化的过程。研究结果为不同含水饱和度岩石试样的精确制备提供了新的方法和思路。

关键词: 恒湿环境, 饱和度, 渗透技术, 化学热力学, 制备装置, 砂岩试样

Abstract:

In view of the low accuracy and uneven water distribution of water content in rock samples with different water saturations,a preparation method of rock samples with different water saturations and uniform distribution of water content was proposed based on the principle of osmotic technology and chemical thermodynamics.The basic principle consists of two parts:One is to control the concentration and molecular weight size of polyethylene glycol(PEG) in organic solution,so as to precisely control the matrix suction values of the solution water and water in the sample to determine the final water saturation of the sample.The other is to control the type of supersaturated solution placed in the constant humidity environment of the rock sample,so as to precisely control the chemical potentials of the component water when the total weight of the sample is stable,and the final water saturation of the sample is determined. The water saturation of rock samples prepared by this mothed are qualified samples with uniform saturation distribution.The water rationality of the method for accurately preparing rock samples with uniform water saturation distribution was also verified by nuclear magnetic resonance imaging(NMRI) experiments.Meanwhile,a device is designed independently to prepare rock samples with different saturations under constant humidity environment,and the constant strain rate compression test of sandstone under different saturation conditions was carried out by using the device.The test results show that the uniaxial compressive strength and elastic modulus of sandstone decreases with the increase of water saturation.After the peak,the post-peak stress decline slows and the brittleness of the sample decreases with the increase of water saturation. With the increase of confining pressure,the compaction stage of sandstone sample is weakened,and the deformation of the sample undergoes the process of elastic-brittle→elastic-plastic→strain hardening.The results of the study provide new methods and ideas for the accurate preparation of rock samples with different water saturations.

Key words: constant humidity environment, saturation, osmotic technique, chemical thermodynamics, preparation device, sandstone sample

中图分类号: 

  • TU45

图1

局部等效界面结构示意图"

图2

试样浸泡3 min后静置不同时间时内部体积含水率分布"

图3

含水砂岩试样单轴抗压强度、弹性模量与静置时间之间的关系"

图4

试验装置示意图"

图5

恒湿环境下不同含水饱和度岩石试样制备装置1-单轴蠕变试验机;2-缸体;3-缸盖;4-O型橡胶密封圈;5-下柱塞;6-上柱塞;7-不锈钢搅拌浆;8-支架;9-工作头;10-温度计;11-湿度计;12-圆柱体岩石岩样;13-生物半透膜;14-约束环;15-压头;16-上固定块;17-下固定块;18-位移传感器;19-压力伺服控制与应力位移记录系统;20-溶液"

表1

部分砂岩试样的物理性质"

试件编号尺寸/mm试件 质量/g纵波速度 /(m·s-1
高度直径
sz-01100.0549.92414.92 410
sz-0299.4449.79416.32 312
sz-03100.2949.78414.82 144
sz-0498.8249.49415.22 439
sz-0599.2150.36415.42 364
sz-06100.4849.75415.82 463
sz-07100.0950.03416.12 326
sz-08100.1449.61415.82 418
sz-0999.5749.67414.42 427
sz-10100.7849.73416.12 439
sz-1198.8950.05415.62 418
sz-12100.2449.82415.92 442
sz-1399.6549.57416.42 503
sz-1499.8850.11416.62 494
sz-15100.2249.92415.42 345
sz-16100.4849.93416.32 372
sz-17101.0250.08416.32 320
sz-1899.4449.68415.52 567

图6

试验不同时间后砂岩试样水分分布的核磁共振图像注:蓝色箭头代表水分子运移方向"

图7

砂岩试样单轴应力—应变试验曲线与宏观破裂形态"

表2

不同围压作用下压缩试验结果"

围压值/MPa试样编号抗压强度/MPa强度均值/MPa

离散度

/%

0sz-0457.353.57.1
sz-0852.51.9
sz-1250.65.4
5sz-0190.997.16.4
sz-0298.31.2
sz-03102.25.3
10sz-05115.4118.12.3
sz-06114.13.4
sz-07124.95.8
20sz-09165.9160.73.2
sz-10160.20.3
sz-11156.12.9
30sz-13170.8181.15.7
sz-14182.10.6
sz-15190.55.2
40sz-17212.0214.61.2
sz-18227.66.1
sz-19204.34.8

图8

不同围压条件下砂岩试样应力—应变曲线"

Baud P, Zhu W, Wong T F,2000.Failure mode and weakening effect of water on sandstone[J].Journal of Geophysical Research:Solid Earth,105(B7):16371-16389.
Chao Zhiming, Wang Huanling, Xu Weiya,et al,2018.A rapid method for preparing rock samples with different water saturation levels[J].Rock and Soil Mechanics,39(3):1109-1114.
Fu T F, Xu T, Meredith P G,et al,2021a.A meso-mechanical approach to time-dependent deformation and fracturing of partially saturated sandstone[J].International Journal of Rock Mechanics and Mining Sciences, 145:104840.
FuT F, Xu T, Heap M,et al,2021b.Analysis of capillary water imbibition in sandstone via a combination of nuclear magnetic resonance imaging and numerical DEM modeling[J].Engineering Geology,285:106070.
Grgic D, Amitrano D,2009.Creep of a porous rock and associated acoustic emission under different hydrous conditions[J].Journal of Geophysical Research: Solid Earth,114(B10):B10201.
Hawkins A, McConnell B,1992.Sensitivity of sandstone streng-th and deformability to changes in moisture content[J].Quarterly Journal of Engineering Geology and Hydrogeology,25(2):115-130.
Heap M J, Villeneuve M, Kushnir A R,et al,2019. Rock mass strength and elastic modulus of the Buntsandstein:An important lithostratigraphic unit for geothermal exploitation in the Upper Rhine Graben[J].Geothermics,77:236-256.
Jiang Jingdong, Chen Shengshui, Xu Jie,et al,2018.Mechanical properties and energy characteristics of mudstone under different containing moisture states[J].Journal of China Coal Society,43(8):2217-2224.
Lajtai E Z, Schmidtke R H, Bielus L P,1987.The effect of water on the time-dependent deformation and fracture of a granite[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,24(4):247-255.
Li Dazhen,1982.Chemical Thermodynamics Foundation[M].Beijing:Beijing Normal University Press.
Liu Bo, Sun Yanding, Yuan Yifeng,et al,2020.Strength characteristics of frozen sandstone with different water content and its strengthening mechanism[J].Journal of China University of Mining and Technology,49(6):1085-1093,1127.
Liu Ding, Xu Junce, Pu Hai,2021.Experimental study on creep characteristics of gangue cemented fillers with different water content[J].Journal of Mining and Safety Engineering,38(5):1055-1062.
Liang X, Tang C A, Hu L H,et al,2023.Shear behavior and fracturing mechanism of intact sandstone affected by spatio-temporally varying water[J].Computers and Geotechnics,155:105200.
Shakoor A, Barefield E H,2009.Relationship between unconfined compressive strength and degree of saturation for selected sandstones[J].Environmental and Engineering Geoscience,15(1):29-40.
Su Chengdong, Fu Yisheng,2014.Experimental study of triaxial compression deformation and strength characteristics of red sandstone[J].Chinese Journal of Rock Mechanics and Engineering,33(Supp.1):3164-3169.
Tang S B,2018.The effects of water on the strength of black sandstone in a brittle regime[J].Engineering Geology, 239:167-178.
Tang Youqi,1984.Phase Equilibrium,Chemical Equilibrium and Thermodynamics[M].Beijing:Science Press.
Verstrynge E, Adriaens R, Elsen J,et al,2014. Multi-scale analysis on the influence of moisture on the mechanical behavior of ferruginous sandstone[J].Construction and Building Materials,54:78-90.
Wong L N Y, Maruvanchery V, Liu G,2016.Water effects on rock strength and stiffness degradation[J].Acta Geotechnica,11(4):713-737.
Wu Yanqing, Zhang Zhuoyuan,1995. Introduction to Rock Mass Hydraulics[M]. Chengdu:Southwest Jiaotong University Press.
Yang Yongming, Ju Yang, Chen Jialiang,et al,2014. Cracks development features and energy mechanism of dense sandstone subjected to triaxial stress[J].Chinese Journal of Rock Mechanics and Engineering,33(4):691-698.
Zhao Honghe, Yang Xiaolin, Gao Fuqiang,et al,2014.Discussion on preparing methods of rock samples with different water contents[J].Journal of Luoyang Institute of Science and Technology,24(1):4-7.
Zhou Hui, Li Zhen, Song Yuze,et al,2013.Chemo-thermodynamical method for precisely preparing rock sample with different water contents[J].Rock and Soil Mechanics,34(2):311-315.
Zhou Zilong, Xiong Cheng, Cai Xin,et al,2018. Mechanical and infrared radiation properties of sandstone with different water contents under uniaxial compression[J].Journal of Central South University(Science and Technology),49(5):1189-1196.
巢志明,王环玲,徐卫亚,等,2018.一种快速制备不同含水饱和度岩石试样的方法[J].岩土力学,39(3):1109-1114.
蒋景东,陈生水,徐婕,等,2018.不同含水状态下泥岩的力学性质及能量特征[J].煤炭学报,43(8):2217-2224.
李大珍,1982.化学热力学基础[M].北京:北京师范大学出版社.
刘波,孙颜顶,袁艺峰,等,2020.不同含水率冻结砂岩强度特性及强度强化机制[J].中国矿业大学学报,49(6):1085-1093,1127.
刘鼎,许军策,浦海,2021.不同含水率下矸石胶结充填体蠕变特性试验研究[J].采矿与安全工程学报,38(5):1055-1062.
苏承东,付义胜,2014.红砂岩三轴压缩变形与强度特征的试验研究[J].岩石力学与工程学报,33(增1):3164-3169.
唐有祺,1984.相平衡、化学平衡和热力学[M].北京: 科学出版社.
仵彦卿,张倬元,1995.岩体水力学导论[M].成都:西南交通大学出版社.
杨永明,鞠杨,陈佳亮,等,2014. 三轴应力下致密砂岩的裂纹发育特征与能量机制[J].岩石力学与工程学报,33(4):691-698.
赵红鹤,杨小林,高富强,等,2014. 不同含水率岩石试样制备方法探讨[J].洛阳理工学院学报(自然科学版),24(1):4-7.
周辉,李震,宋雨泽,等,2013.精确制备不同含水率岩石试样的化学热力学方法[J].岩土力学,34(2):311-315.
周子龙,熊成,蔡鑫,等,2018.单轴载荷下不同含水率砂岩力学和红外辐射特征[J].中南大学学报(自然科学版),49(5):1189-1196.
[1] 梅倩玮,陈刚,罗凤强,马玲,龚红胜,龙妍竹. 天然岩石裂隙面粗糙度尺寸效应及方向性研究[J]. 黄金科学技术, 2024, 32(2): 290-305.
[2] 王卫华, 黄瑞新, 罗杰. 应力波在非线性变形节理处传播规律的颗粒流模拟研究[J]. 黄金科学技术, 2023, 31(4): 580-591.
[3] 周可凡,刘科伟,郭腾飞. 基于声发射的倾斜软硬互层岩石破坏特性研究[J]. 黄金科学技术, 2022, 30(6): 923-934.
[4] 赖玉彰,支学艺,舒荣华. 复合岩石单轴压缩力学与破坏特性试验研究[J]. 黄金科学技术, 2022, 30(5): 778-786.
[5] 黄晓辉,刘科伟,周占星,马泗洲,郭腾飞. 高温后红砂岩压剪下声发射及其微观特性研究[J]. 黄金科学技术, 2022, 30(5): 764-777.
[6] 肖峰, 曹平, 刘智振, 张子洋. 不同应力上限和加载速率下的黄砂岩疲劳特性研究[J]. 黄金科学技术, 2022, 30(2): 233-242.
[7] 周盛全, 王瑞, 田诺成, 李栋伟. 冲击荷载作用下热处理花岗岩动态力学特性研究[J]. 黄金科学技术, 2022, 30(2): 222-232.
[8] 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833.
[9] 李柏锦,李响,王彦,尹土兵,李夕兵. 温度冲击对花岗岩动态拉伸力学性能的影响[J]. 黄金科学技术, 2021, 29(4): 545-554.
[10] 王玺,马春德,刘兴全,姜明伟,范玉赟. 滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系[J]. 黄金科学技术, 2021, 29(4): 535-544.
[11] 杨少峰,蒲成志,曾佳君,李益龙. 不同张开度裂隙类岩体循环加卸载下滞回环特征与损伤变形分析[J]. 黄金科学技术, 2021, 29(3): 392-400.
[12] 杜坤,杨颂歌,苏睿,杨成志,王少锋. 不同应力条件下硬岩强度与破裂特性试验研究[J]. 黄金科学技术, 2021, 29(3): 372-381.
[13] 胡建华,董喆喆,马少维,秦亚光,徐晓,代转. 应力—渗流耦合作用下损伤岩石渗流特性[J]. 黄金科学技术, 2021, 29(3): 355-363.
[14] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[15] 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[9] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[10] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .