img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (2): 290-305.doi: 10.11872/j.issn.1005-2518.2024.02.137

• 采选技术与矿山管理 • 上一篇    下一篇

天然岩石裂隙面粗糙度尺寸效应及方向性研究

梅倩玮1,2(),陈刚1(),罗凤强3,马玲4,龚红胜1,龙妍竹1   

  1. 1.昆明理工大学国土资源工程学院,云南 昆明 650031
    2.中国地质大学(北京)地下水循环与环境演化教育部重点实验室,北京 100083
    3.云南坤润地质勘查技术有限公司,云南 昆明 650051
    4.昆明理工大学城市学院,云南 昆明 650051
  • 收稿日期:2023-10-06 修回日期:2024-01-31 出版日期:2024-04-30 发布日期:2024-05-21
  • 通讯作者: 陈刚 E-mail:meiqianwei@qq.com;chen_kust@qq.com
  • 作者简介:梅倩玮(1998-),女,贵州瓮安人,硕士研究生,从事岩石裂隙渗流研究工作。meiqianwei@qq.com
  • 基金资助:
    云南省重点研发计划社会发展专项“云南重大地震灾害及其灾害链综合风险评估技术与应用”(202203AC100003);云南省教育厅科学研究基金项目“裂隙粗糙性对裂隙网络中地下水优势流形成的影响机制及模拟研究”(2023J0124)

Research on Size Effect and Directionality of Roughness of Natural Rock Fracture Surface

Qianwei MEI1,2(),Gang CHEN1(),Fengqiang LUO3,Ling MA4,Hongsheng GONG1,Yanzhu LONG1   

  1. 1.Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650031, Yunnan, China
    2.MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences(Beijing), Beijing 100083, China
    3.Yunnan Kunrun Geological Exploration Technology Co. , Ltd. , Kunming 650051, Yunnan, China
    4.City College, Kunming University of Science and Technology, Kunming 650051, Yunnan, China
  • Received:2023-10-06 Revised:2024-01-31 Online:2024-04-30 Published:2024-05-21
  • Contact: Gang CHEN E-mail:meiqianwei@qq.com;chen_kust@qq.com

摘要:

为探究岩石裂隙粗糙面尺寸效应及方向性,对立方定律修正公式中表征天然岩石粗糙裂隙性质的粗糙度修正系数C进行分析。采用高精度3D扫描仪扫描天然岩石样品,得到其表面粗糙度数据,结合网络公开发布的高精度粗糙岩石裂隙CT扫描数据,生成空间坐标,采用公式法和数值法计算分析粗糙度修正系数C。根据公式法计算结果得出粗糙度具有尺寸效应;根据数值法结果得出粗糙度具有方向性,且粗糙度方向性可使用张量形式来表达。通过计算粗糙裂隙JRC值、表面及隙宽分形维数对研究结果进行印证,证明裂隙面粗糙度具有尺寸效应和各向异性。进一步研究发现:可采用粗糙度修正系数张量或粗糙度张量结合裂隙平均隙宽,形成单裂隙渗透张量,量化复杂粗糙裂隙网络中模型的粗糙面。

关键词: 天然岩石, 粗糙度, 单裂隙, 粗糙度修正系数, 方向性, 尺寸效应, 粗糙度张量

Abstract:

To delve into the size-related effects and directional properties of the roughness on rock fracture surfaces,this paper focus on analyzing the roughness correction coefficient C within the refined formula of the cubic law,as it effectively characterizes the roughness of natural rock fractures. Since Louis first introduced the cubic law,numerous scholars have since proposed numerous modified formulas,including those by Zhang Youtian,Zimmerman,and Xiong et al. Through conversion,we acquire the calculation formula for the roughness correction coefficient and utilize collected natural fractures for related computations.High-precision 3D scanning technology was used to scan natural rock samples and acquire roughness data of fracture surfaces. By combining this data with publicly available high-precision CT scan data of rough rock fractures,we generate spatial coordinates.Both formulaic and numerical methods were used to calculate and analyze the roughness correction coefficient C. Using the formulaic approach,the roughness correction coefficient for sample sizes ranging from 10% to 100% of the fracture surface were calculated and varying results were obtained,which indicates that roughness exhibits a scale effect. According to the numerical method,a well-fitting ellipse was obtained,indicating that the roughness correction coefficient possesses directionality and can be expressed using tensor notation. This conclusion is further supported by calculating the JRC value of rough fractures and their surface and crack width fractal dimensions,revealing that the roughness of fracture surfaces exhibits scale effects and anisotropy. Upon further investigation,it is discovered that the roughness correction coefficient tensor or roughness tensor,when combined with average crack width,can be utilized to form a single crack permeability tensor that quantifies the rough surface in complex rough crack network models

Key words: natural rock, roughness, single fracture, roughness correction coefficient, directionality, scale effect, roughness tensor

中图分类号: 

  • TU45

表1

水力隙宽和机械隙宽的代表性经验关系式"

公式注释文献来源
bh2=bm2CC=1+m?2bm1.5m=17bm为不连续表面粗糙度的量级,m为一个系数刘日成等,2014
bh2=bm2CC=1+m?2bm1.5m=8.8Louis,1969
bh2=bm2CC=1+m?2bm1.5m=20.5刘日成等,2014
bh=bm1-0.9exp-0.56bmσE13σE为机械孔径上不同孔径的标准偏差Patir,1978
bh3=bm31-C1+C在Zimmerman et al.(1996)的研究中C = 0.25 (1992)Walsh,1981
bh=bmJRC2.5bh2=bmC,C=JRC5e2Barton et al.,1978
bh2=bm2CC=1.1~1.7bm = 100~500 μmHakami et al.,1995
bh=bm1+σE2bm2-12Renshaw et al.,1995
bh3bm31-1.5σapert2bm2+...1-2cC为接触比Zimmerman et al.,1996
bh=bmbm/τ1/3<bm>为真实孔隙的调和平均值,τ为曲折度Waite et al.,1999
bh3=bm31-1.131+0.1912bm/σapert1.93σapert为平均机械孔隙的标准偏差Matsuki et al.,1999
bh=bm2JRC2.5us0.75uspJRCmobJRC的变值,us是不超过峰值usp剪切位移的75%Olsson et al.,2001
bh=bm1/2JRCmobususp
bh3=bm31-1.0σapertbm1-σapertbmσslope10Reσslope是断裂面局部斜率的标准偏差Xiong et al.,2011

bh=bm1-0.03dmc-0.565JRCa13

bh=bm1-2.25σEbm13

dmc 是最小闭合距离,而 JRCa 是上、下2个面平均结合粗糙系数Rasouli et al.,2011

bh=bm1+Z22.25Re<1

bh=bm1+Z22.25+(0.00006+0.004)Z22.25(Re-1)Re≥1

Z2是水头的第一偏差的均方根Li et al.,2008
bh3=bm30.94-5.0σs2bm2σs是剪切过程中机械孔隙的标准偏差Xie et al.,2015
bh2=bm2CC=1+m?2bm0.61912m=0.6138张戈等,2019

表2

裂隙宽度与粗糙度的关系公式"

代表符号公式注释文献来源
Eq-Lbhbm=1CC=1+m?2bm1.5m=8.8Louis,1969
Eq-Zibhbm=1-1.5σs2/bm2?3σs 趋于0时,比值bh/bm 趋于1Zimmerman et al.,1996
Eq-Mbhbm=1-1.131+0.1912bm/σs01.933σs0为初始孔径值的标准偏差Matsuki et al.,1999
Eq-Xbhbm=1-1.0σs2/bm23Xiong et al.,2011
Eq-Zhbhbm=1CC=1+m?2bm1.5,?=1ni=1nhi?-hi-1?张有天,2005

图1

水头水流方向示意图(a)和计算完成后的流场示意图(b)"

图2

现场勘查(a)和3D扫描仪工作图(b)"

图3

样品图(a1~g1)及其隙宽(a2~g2)、裂隙表面三维图(a3~g3)"

图4

高精度粗糙岩石裂隙CT扫描二维和三维图"

图5

截取裂隙数据示意图注:按样本所能截取的最大正方形为最大尺寸(即截取框尺寸占比定为100%),逐渐减小截取框尺寸占比进行空间数据截取。每个尺寸截取框在截取时,从水平(0°)开始旋转,每旋转5°截取一次,直至旋转一周(360°)"

图6

不同公式计算得到的粗糙度修正系数随尺寸变化曲线"

图7

各样品粗糙度修正系数椭圆拟合极坐标图注:(a)~(i)分别是S1~S9样品的粗糙度修正系数的椭圆拟合结果,所有岩石样品粗糙度修正系数均会随着方向的变化而变化"

表3

椭圆旋转角度"

样品编号偏转角度/(°)长轴/mm短轴/mm
S153.603.111.11
S2-31.931.271.08
S3-3.211.841.26
S443.761.911.70
S514.681.320.98
S612.551.951.36
S7-16.662.861.56
S8-15.653.242.08
S9-31.015.792.10

表4

粗糙度修正系数张量计算结果"

样品编号CanC1jC2j样品编号CanC1jC2j样品编号CanC1jC2j
S1Ci11.8126-0.9559S4Ci11.8080-0.1038S7Ci11.6668-0.3571
Ci2-0.95592.4045Ci2-0.10381.7990Ci2-0.35712.7532
S2Ci11.21880.0881S5Ci10.15040.1504S8Ci12.1644-0.3013
Ci20.08811.1324Ci21.22931.2293Ci2-0.30133.1556
S3Ci11.81450.1293S6Ci11.9221-0.1251S9Ci14.81061.6293
Ci20.12931.2937Ci2-0.12511.3879Ci21.62933.0794

表5

拟合椭圆长短轴比值与对应JRC值结果对比"

样品编号拟合椭圆长短轴拟合椭圆比值(短轴∶长轴)相同角度JRCJRC比值
短轴长轴短轴方向长轴方向
S21.07941.25640.85918.05248.87380.9074
S51.78331.88941.05955.20425.31600.9790
S81.75851.80481.026315.835716.14320.9810
S91.98112.37230.835110.186711.33950.8983

表6

基于粗糙度修正系数的分形维数计算结果"

样品编号不同尺寸下的分形维数
10%20%30%40%50%60%70%80%90%100%
S1-AP2.15522.23192.31032.35942.39452.41372.43752.44162.45922.4759
S1-Sur2.09492.13152.10572.09852.11432.11142.10032.09852.09082.2086
S2-AP2.19192.26322.28702.32062.32232.34582.36472.38182.40562.4222
S2-Sur2.08642.07482.09262.10262.07622.06322.06022.06002.05322.0515
S3-AP2.21152.32952.36512.38322.39882.41322.41752.42392.43272.4157
S3-Sur2.10552.10052.11382.06972.07622.06642.06832.06272.06812.0862
S4-AP2.23442.35212.23002.27412.27472.23432.24122.20432.20322.2010
S4-Sur2.15242.13582.11122.12992.16932.16432.17142.18992.18402.2084
S5-AP2.27392.3222.32642.36442.35172.33732.30752.32002.32562.3333
S5-Sur2.10742.06652.09782.14782.13072.14292.15242.14772.16302.1537
S6-AP2.15862.26722.33142.37082.40832.42902.45712.47672.47572.4688
S6-Sur2.15122.18052.20402.20482.23112.22722.22032.22842.22472.2289
S7-AP2.16732.21122.27732.32342.36182.39572.41712.38212.38152.4865
S7-Sur2.11712.12562.16522.19382.20322.18752.17392.17922.17312.1796
S8-AP2.19482.23502.27122.30562.33052.32092.32992.34992.35452.4317
S8-Sur2.18002.18872.19272.18952.16912.19702.16132.14102.13932.1491
S9-AP2.14482.25312.30782.37222.42372.40672.42522.44412.46082.3932
S9-Sur2.09952.14972.12912.14752.16322.16582.16302.16212.16222.1919

图8

各岩石裂隙面分形维数图"

Barton N, Choubey V,1978.The shear strength of rock joints in theory and practice[J].Rock Mechanics Felsmechanik Mécanique des Roches,10(1/2):1-54.
Brown S R,1995.Simple mathematical-model of a rough fracture[J].Journal of Geophysical Research-Solid Earth,DOI:10.1029/94JB03262 .
doi: 10.1029/94JB03262
Candela T, Renard F, Yann K,et al,2012.Roughness of fault surfaces overnine decades of length scales[J].Journal of Geophysical Research-Solid Earth,117:B08409.DOI:10.1029/2011JB009041 .
doi: 10.1029/2011JB009041
Chen Gang, Xu Shiguang, Ma Ling,et al,2022.Study on Fractured Permeability of Rough Rock Mass Based on Multi-Scale Three-Dimensional Spatial Fractured Distribution[M].Beijing:Metallurgical Industry Press.
Cheng Huihui, Gao Yue, Guo Fengjuan,et al,2023.Research on seepage test model of rough rock fracture[J].Water Resources and Power,41(1):137-141.
Chen Shijiang, Zhu Wancheng, Wang Chuangye,et al,2017. Review of research progresses of the quantifying joint roughness coefficient[J]. Chinese Journal of Theoretical and Applied Mechanics,49 (2):239-256.
Du S G, Lin H, Yong R,et al,2022.Characterization of joint roughness heterogeneity and its application in representative sample investigations[J].Rock Mechanics and Rock Engineering,55:3253-3277 .
Fardin N, Jing L R, Stephansson O,2001.The scale dependence of rock joint surface roughness[J].International Journal of Rock Mechanics and Mining Sciences,38(5):659-669.
Hakami E, Larsson E,1996.Aperture measurements and flow experiments on a single natural fracture[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,33(4):395-404.
He Yulong, Tao Yujing, Yang Lizhong,2010.Experimental research on hydraulic behaviors in a single joint with various values of JRC[J].Chinese Journal of Rock Mechanics and Engineering,29(Supp.1):3235-3240.
Jiang Yujing, Li Bo, Wang Gang,et al,2008.New advances in experimental study on seepage characteristics of rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering,27(12):2377-2386.
Ju Yang, Zhang Qingang, Yang Yongming,et al,2013.Experimental study on the seepage mechanism of rough single fractured fluid in rock mass[J].Scientia Sinica (Technological),43(10):1144-1154.
Ketcham R A, Slottke D T, Sharp J M,2010.Three-dimensional measurement of fractures in heterogeneous materials using high-resolution X-ray computed tomography[J].Geosphere,6(5):1-54.
Lang P S, Paluszny A, Zimmerman R W,2014.Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions(Article)[J].Journal of Geophysical Research:Solid Earth,119(8):6288-6307.
Lee S H, Yeo I W, Lee K K,et al,2017.The role of eddies in solute transport and recovery in rock fractures:Implication for groundwater remediation[J].Hydrological Processes,31(20):3580-3587.
Li B, Jiang Y J, Koyama T,et al,2008.Experimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures[J].International Journal of Rock Mechanics and Mining Sciences,45(3):362-375.
Liu R C, Li B, Jiang Y J,et al,2018.A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks[J]. Advances in Water Resources,111:289-300.
Liu Richeng, Jiang Yujing, Li Bo,et al,2014.Numerical calculation of directivity of equivalent permeability of fractured rock masses network[J].Rock and Soil Mechanics,35(8):2394-2400.
Liu Weiqun, Wang Dongni, Su Qiang,2016.Dual media model of shale layer with anisotropy involved and its simulation on gas migration[J].Natural Gas Geoscience,27(8):1374-1379.
Long J C S, Remer J S, Wilson C R,et al,1982.Porous media equivalents for networks of discontinuous fractures[J].Water Resources Research,18(3):645-658.
Louis C,1969. A Study of Groundwater Flow in Jointed Rock and Its Influence on The Stability of Rock Masses[D]. London:Imperial College.
Marcus H,1962.The permeability of a sample of an anisotropic porous medium[J].Journal of Geophysical Research,67(13):5215-5225.
Matsuki K, Lee J J, Sakaguchi K,et al,1999.Size effect in flow conductance of a closed small-scale hydraulic fracture in granite[J].Geothermal Science and Technology,6:113-138.
Olsson R, Barton N,2001.An improved model for hydromechanical coupling during shearing of rock joints[J].International Journal of Rock Mechanics and Mining Sciences,38(3):317-329.
Patir N,1978.A numerical procedure for random generation of rough surfaces[J].Wear,47(2):263-277.
Qin Yuan, Zhang Xin, Chai Junrui,et al,2020.Simulating the influence of different joint roughness on single-fracture seepage[J].Chinese Journal of Applied Mechanics,37(1):455-462,500.
Rasouli V, Hosseinian A,2011.Correlations developed for estimation of hydraulic parameters of rough fractures through the simulation of JRC flow channels[J].Rock Mechanics and Rock Engineering,44(4):447-461.
Renshaw C E, Pollard D D,1995.An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,32(3):237-249.
Richard K,2016.Fracture in tuff[EB/OL].Digital Rocks Portal (April 2016).:.
Richard K, Matthew C, Zhou J Q,et al,2018.Fracture in granite[EB/OL].Digital Rocks Portal(December 2).:.
Waite M E, Ge S M, Spetzler H,et al,1998.The effect of surface geometry on fracture permeability:A case study using a sinusoidal fracture[J]. Geophysical Research Letters,25(6):813-816.
Walsh J B,1981.Effect of pore pressure and confining pressure on fracture permeability[J].International Journal of Rock Mechanics and Mining Sciences,18(5):429-435.
Wang Bao, Wang Yuan, Niu Yulong,2017.Determinateion on hydraulic aperture of single rough fractures based on standard curves of discrete joint roughness coefficien[J].Water Resources and Power,35(4):77-80,62.
Wang Gang, Jiang Yujing, Li Shucai,2014.Coupled Characteristics of Stress Seepage and Anchorage Theory of Fractured Rock Mass[M].Beijing:Science Press.
Wang Ke, Sheng Jinchang, Gao Huicai,et al,2020. Study on seepage characteristics of rough crack under coupling of stress-seepage erosion[J]. Rock and Soil Mechanics,41(Supp.1):30-40.
Wang L C, Cardenas M B, Zhou J Q,et al,2020.The complexity of nonlinear flow and non-fickian transport in fractures driven by three-dimensional recirculation zones[J].Journal of Geophysical Research(Solid Earth),125(9). DOI:10.1029/2020JB020028 .
doi: 10.1029/2020JB020028
Wang Yuan, Su Baoyu,2002.Research on the behavior of fluid flow in a single fracture and its equivalent hydraulic aperture[J].Advances in Water Science,13(1):61-68.
Wu Jimin, Chen Ling, Sun Shaorui,et al,2003.Joint roughness coefficients and their fractal dimension[J].Journal of Hohai University(Natural Sciences),31(2):152-155.
Xie L Z, Gao C, Ren L,et al,2015.Numerical investigation of geometrical and hydraulic properties in a single rock fracture during shear displacement with the Navier-Stokes equations [J].Environmental Earth Sciences,73(11):7061-7074.
Xiong X B, Li B, Jiang Y J,et al,2011.Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear[J].International Journal of Rock Mechanics and Mining Sciences,48(8):1292-1302.
Xiong Xiangbin, Zhang Chuhan, Wang Enzhi,2009.A review of steady state seepage in a single fracture of rock[J].Chinese Journal of Rock Mechanics and Engineering,28(9):1839-1847.
Zhang Ge, Tian Yuan, Li Yingjun,2019. Numerical study on the mechanism of fluid flow through single rough fractures with different JRC[J]. Scientia Sinica:Physica,Mechanica et Astronomica,49(1):014701..
Zhang Youtian,2005.Rock Hydraulics and Engineering[M].Beijing:China Water and Power Press.
Zhong Zhen, Yan Jinxiu, Xu Congqiang,et al,2021.Study on size effect of permeability of single rough fracture and its corresponding influencing factors[J].Water Resources and Hydropower Engineering,52(4):192-201.
Zhou Chuangbing, Xiong Wenlin,1996.Relation between joint roughness coefficient and fractal dimension[J]. Journal of Wuhan University of Hydraulic and Electric Engineering,29(5):1-5.
Zimmerman R, Bodvarsson G S,1996.Hydraulic conductivity of rock fractures[J].Transport in Porous Media,23(1):1-30.
陈刚,徐世光,马玲,等,2022.基于多尺度三维空间裂隙分布的粗糙岩体裂隙渗透性研究[M].北京:冶金工业出版社.
陈辉辉,高悦,郭凤娟,等,2023.岩石粗糙裂隙渗流试验模型研究[J].水电能源科学,41(1):137-141.
陈世江,朱万成,王创业,等,2017.岩体结构面粗糙度系数定量表征研究进展[J].力学学报,49 (2):239-256.
贺玉龙,陶玉敬,杨立中,2010.不同节理粗糙度系数单裂隙渗流特性试验研究[J].岩石力学与工程学报,29(增1):3235-3240.
蒋宇静,李博,王刚,等,2008.岩石裂隙渗流特性试验研究的新进展[J].岩石力学与工程学报,27(12):2377-2386.
鞠杨,张钦刚,杨永明,等,2013.岩体粗糙单裂隙流体渗流机制的实验研究[J].中国科学(技术科学),43(10):1144-1154.
刘日成,蒋宇静,李博,等,2014.岩体裂隙网络等效渗透系数方向性的数值计算[J].岩土力学,35(8):2394-2400.
刘卫群,王冬妮,苏强,2016.基于页岩储层各向异性的双重介质模型和渗流模拟[J].天然气地球科学,27(8):1374-1379.
覃源,张鑫,柴军瑞,等,2020.模拟不同节理粗糙度对单裂隙渗流的影响[J].应用力学学报,37(1):455-462,500.
王报,王媛,牛玉龙,2017.基于离散标准节理粗糙度系数曲线的粗糙单裂隙等效水力隙宽的确定[J].水电能源科学,35(4):77-80,62.
王刚,蒋宇静,李术才,2014.裂隙岩体应力渗流耦合特性及锚固理论[M].北京:科学出版社.
王珂,盛金昌,郜会彩,等,2020.应力—渗流侵蚀耦合作用下粗糙裂隙渗流特性研究[J].岩土力学,41(增1):30-40.
王媛,速宝玉,2002.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,13(1):61-68.
吴继敏,陈玲,孙少锐,等,2003.裂隙粗糙度系数及其分数维研究[J].河海大学学报(自然科学版),31(2):152-155.
熊祥斌,张楚汉,王恩志,2009.岩石单裂隙稳态渗流研究进展[J].岩石力学与工程学报,28(9):1839-1847.
张戈,田园,李英骏,2019.不同JRC粗糙单裂隙的渗流机理数值模拟研究[J].中国科学(物理学力学天文学),49(1):014701..
张有天,2005.岩石水力学与工程[M].北京:中国水利水电出版社.
钟振,闫金秀,徐从强,等,2021.粗糙单裂隙渗透性尺寸效应及其影响因素研究[J].水利水电技术,52(4):192-201.
周创兵,熊文林,1996.节理面粗糙度系数与分形维数的关系[J].武汉水利电力大学学报,29(5):1-5.
[1] 赵奎,刘周超,曾鹏,龚囱. 单轴压缩下不同尺寸充填体能量损伤演化特征试验研究[J]. 黄金科学技术, 2022, 30(4): 540-549.
[2] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[9] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[10] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .