img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (2): 306-317.doi: 10.11872/j.issn.1005-2518.2024.02.008

• 采选技术与矿山管理 • 上一篇    下一篇

不耦合装药系数对岩体爆破损伤的影响

梁瑞1(),曹晓睿1(),周文海1,楼晓明2,3,胡才智4,王树江5   

  1. 1.兰州理工大学石油化工学院,甘肃 兰州 730050
    2.福州大学紫金地质与矿业学院,福建 福州 350116
    3.福州大学爆炸技术研究所,福建 福州 350116
    4.中国科学院西北生态环境资源研究院,甘肃 兰州 730099
    5.中国石油大学(北京)机械与储运工程学院,北京 102249
  • 收稿日期:2023-12-27 修回日期:2024-02-29 出版日期:2024-04-30 发布日期:2024-05-21
  • 通讯作者: 曹晓睿 E-mail:liangr@lut.edu.cn;cxr0929666@163.com
  • 作者简介:梁瑞(1968-),男,甘肃兰州人,教授,博士,从事安全工程与工程爆破研究工作。liangr@lut.edu.cn
  • 基金资助:
    国家自然科学基金项目“移动环境中非局部扩散自由边界问题的传播动力学”(11901264)

Effect of Uncoupled Charge Coefficients on Rock Blast Damage

Rui LIANG1(),Xiaorui CAO1(),Wenhai ZHOU1,Xiaoming LOU2,3,Caizhi HU4,Shujiang WANG5   

  1. 1.School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2.Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350116, Fujian, China
    3.Institute of Explosion Technology, Fuzhou University, Fuzhou 350116, Fujian, China
    4.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730099, Gansu, China
    5.College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
  • Received:2023-12-27 Revised:2024-02-29 Online:2024-04-30 Published:2024-05-21
  • Contact: Xiaorui CAO E-mail:liangr@lut.edu.cn;cxr0929666@163.com

摘要:

在爆破工程中,选择合适的装药结构能够有效提高炸药利用率,从而改善爆破效果。基于RHT(Riedel-Hiermaier-Thomamodel)动态响应力学关系,采用ANSYS/LS-DYNA软件研究了偏心不耦合装药条件下不耦合系数K对岩体爆破荷载的影响,以及爆破过程中岩体的损伤情况。通过建立单孔偏心不耦合爆破模型,分析了不耦合系数K为1.0、1.5、2.0、2.5、3.0和3.5条件下的有效应力、振动速度、爆破地震波能量和损伤状况。同时,研究了不同不耦合系数K条件下爆心距(l)与损伤度(D质点振动速度(PPV)与爆心距(l),以及振动速度(vpp)与损伤度(D)之间的关系。结果表明:随着不耦合系数K的增大,耦合侧与不耦合侧有效应力和峰值振动速度、地震波峰值能量略微减小;粉碎区和裂隙区范围逐渐减小,且粉碎区损伤半径较裂隙区减小速率更大。岩体损伤程度和质点振动速度(vpp)均随着爆心距的增大而逐渐减小。质点振动速度越大损伤程度也越大,当vpp=50.4 cm/s时,岩体中的损伤变量达到损伤破坏阈值(D=0.19);当vpp>140.6 cm/s时,损伤度D>0.80。

关键词: 岩体损伤, 质点振动速度, 有效应力, 装药结构, 爆心距, 不耦合系数

Abstract:

A suitable charging structure in blasting engineering can effectively improve the utilization rate of explosives and thus improve the blasting effect.Based on the RHT(Riedel-Hiermaier-Thomamodel)dynamic response mechanics relationship,ANSYS/LS-DYNA software was used to study the effect of the uncoupling coefficient K on the blasting load of rock body under the condition of eccentric uncoupled charge and the damage of rock body during blasting.The effective stress,vibration velocity,seismic wave energy and damage conditions under uncoupling coefficients K=1.0,1.5,2.0,2.5,3.0 and 3.5 were analyzed by establishing a single-hole eccentric uncoupled blasting model.In addition,the relationship between burst center distance l and damage degree D,mass vibration velocity PPV and burst center distance l,and vibration velocity vpp and damage degree D under different conditions of uncoupling coefficients K were investigated.The results show that with the increase of the uncoupling coefficient K,the effective stress and peak vibration velocity of the coupled and uncoupled sides and the peak energy of the seismic wave decreases slightly.The range of the crushed zone and the fracture zone decreases gradually,and the radius of the damage in the crushed zone is larger than the rate of decrease in the fracture zone.The damage degree of rock body and the mass vibration velocity vpp are gradually reduced with the increase in the burst center distance. The greater the particle vibration velocity vpp is,the larger the damage degree is.When vpp reached 50.4 cm/s, the damage variable D in the rock body reached the damage failure threshold of 0.19.When vpp>140.6 cm/s,the damage degree D>0.80.

Key words: rock damage, particle vibration velocity, effective stress, charge structure, blast center distance, uncoupling coefficient

中图分类号: 

  • X932

图1

数值模型及网格划分示意图"

图2

监测点示意图"

图3

本构模型示意图"

表1

RHT模型参数"

参数数值参数数值参数数值
ρ/(kg·m-32 660B11.22B*1.6
SHEAR/GPa17B21.22GC*0.4
fc/MPa150Bq0.0105GT*0.7
A2.50T1/GPa43.87M0.85
N0.85T20Q2,00.685
n3D10.04AF1.62
A1/GPa43.87D21NF0.6
A2/GPa49.40Pl/MPa600NP4
A3/GPa11.62Pc/MPa133ALPHA1.10

图4

耦合侧有效应力—时间曲线"

图5

非耦合侧有效应力—时间曲线"

图6

耦合侧速度—时间曲线"

图7

非耦合侧速度—时间曲线"

图8

不同工况下地震波能量—时间曲线"

图9

t=1 000 μs时刻不同工况下岩体损伤云图"

图10

不同工况下岩体损伤半径注:I区-粉碎区半径;II区-密集裂隙区半径;III区-稀疏裂隙区半径"

表2

装药半径为0.2 m时不同方法得到的爆破损伤范围"

爆破损伤 范围参数参数获取方法数值
粉碎区R1/m公式法:R1=(ρ0v2nK-2γleB82σc)1αrb0.60~1.47
经验值:2~7倍装药半径0.4~1.4
本文方法0.7~1.2
裂隙区R2/m公式法:R2=(ρ0v2nK-2γleB82σc)1αrb1.00~3.87
经验值:10~15倍装药半径2~3
本文方法1.8~2.7

图11

爆心距(l)与损伤度(D)之间的变化曲线"

图12

峰值振动速度(vpp)与爆心距(l)之间的关系曲线"

图13

峰值振动速度(vpp)与损伤变量(D)之间的关系曲线"

Bao Juan,2023. Study on Dynamic Response and Blasting Characteristics of Deep Rock Blasting [D].Lanzhou:Lanzhou University of Technology.
Blasting Group of Construction Committee of China Water Resources Society,1995. technical specification for rock foundation excavation of hydraulic buildings [S].Beijing:Water Conservancy and Electric Power Press.
Chen Xiaolin, Zhang Zhiyu, Wang Kai,et al,2023.Relationship between crack extension and uncoupled charging coefficient in deep rock blasting[J].Journal of High Pressure Physics,37(5):137-150.
Dai Jun,2001.Calculation of rock crushed circle and fracture circle by column charge blasting[J].Journal of Liaoning Te-chnical University,20(2):144-147.
Fan Yong, Wu Fan, Leng Zhendong,et al,2024.The effect of burst pressure peak elimination by radial uncoupled charge and its effect on the range of rock fracture[J].Journal of Military Engineering,45(1):131-143.
Guo Xuebin, Xiao Zhengxue, Zhang Jichun,2006.On the attenuation characteristics of blasting seismic waves during propagation[J].China Mining Industry,15(3):51-53,57.
He Fulian, Xiao Peng, Lai Yonghui,et al,2018.Determination of reasonable width of narrow coal pillar based on the third invariant of bias stress[J].Coal Mine Safety,49(3):44-47,51.
Hu Yingguo, Lu Wenbo, Chen Ming,et al,2015.Determination of peak vibration velocity of critical damage plasmas in the near zone of rock blasting[J].Explosion and Shock,35(4):547-554.
Huang Youpeng, Wang Zhiliang, Bi Chengcheng,2018.Simulation analysis of rock blasting damage range and damage distribution characteristics[J].Journal of Water Resources and Water Transportation Engineering,(5):95-102.
Jiang Pengfei, Tang Degao, Long Yuan,2009.Numerical analysis of the effect of uncoupled charge blasting on hard rock stress field[J].Geotechnics,30(1):275-279.
Li Xiaojing, Zhang Xiangyang, Zhang Huaken,et al,2022.Numerical simulation of blasting damage distribution characteristics of eccentric uncoupled charge[J].Journal of Shandong University of Architecture,37(1):8-15.
Liang Rui, Bao Juan, Zhou Wenhai,2022. Characteristics of blasting damage to rock in the proximal zone of hydropower engineering slope gun holes[J].Journal of Changjiang Academy of Sciences,39(8):71-76.
Liang Rui, Wang Shujiang, Zhou Wenhai,et al,2019.Research on blasting crack extension in slope excavation based on stress and velocity time course analysis[J].Journal of Changjiang Academy of Sciences,36(12):71-77.
Liang Weimin, Zhou Fengjun,2012.Effect of uncoupled charge structure on rock blasting[J].Journal of Beijing Institute of Technology,32(12):1215-1218,1228.
Liu Yunchuan, Wang Xuguang, Liu Liansheng,et al,2009.An energy method for calculate borehole pressure under decoupled charging[J].China Mining Magazine,18(6):104-107,110.
Pan Qiang, Zhang Jichun, Shi Hongchao,et al,2019.Characterization of rock damage distribution in single-hole uncoupled charge blasting[J].Vibration and Shock,38(18):264-269.
Rao Junying, Xue Yanghao, Shen Yang,et al,2023.Analysis of the coupling between laminar distribution and blasting damage based on RHT model[J].Journal of Central South University (Natural Science Edition),54(3):1204-1218.
Sanchidrián J A, Segarra P, López L M,2007.Energy components in rock blasting[J].International Journal of Rock Mechanics and Mining Sciences,44(1):130-147.
Song Y Q, Li X S, Guo D Y,et al,2019.Study on the decoupled charge effect in deep-hole cumulative blasting of coal seam[J].Advances in Civil Engineering,2019:8486198.
Tawadrous A, 2010. Hard Rocks Under High Strain-rate Loading[D]. Canada: Queen’s University,
Wang W, Zhang J Q, Liu A,2021.Study on eccentric uncoupled blasting effect of cutting seam pipe[J].Coatings,11(1):104.
Wang Zhongren, Zhang Qi,2006.Role of the second and third invariants of the bias stress tensor in plastic processing[J]. Journal of Plasticity Engineering,13(3):1-5.
Xia X, Yu C, Liu B,et al,2018.Experimental study on the seismic efficiency of rock blasting and its influencing factors[J].Rock Mechanics and Rock Engineering,51:2415-2425.
Xu Ying, Meng Yiping, Cheng Yusheng,2002.Experimental study on the control of blasting cracks by charge uncoupling coefficient[J].Journal of Rock Mechanics and Engineering,21(12):1843-1847.
Yang Renshu, Xiao Chenglong, Li Yongliang,et al,2020.A fractal study on blasting damage of an eccentric decouple charge structure[J].Journal of Vibration and Shock,39 (12):129-134.
Ye Zhiwei, Chen Ming, Li Tong,et al,2021.Calculation method of peak pressure of hole wall for blasting with small uncoupling coefficient charge[J].Explosion and Shock,41(6):119-129.
Yin Xiaoyu, Li Jiangong,2022.Analysis of the impact of blasting construction on the stability of tunnel surrounding rock[J]. Science and Technology Innovation and Application,12(28):64-67,71.
Zhang Hua, Gao Fuqiang, Yang Jun,et al,2010.Experimental studies on blasting vibration velocity attenuation law in deep open-pit mining[J].Acta Armamentarii,31(Supp.1):275-278.
Zhu Z M, Mohanty B, Xie H P,2007.Numerical investigation of blasting-induced crack initiation and propagation in rocks[J].International Journal of Rock Mechanics and Mining Sciences,44(3):412-424.
Zong Qi, Cheng Bing, Wang Haibo,2019.Numerical simulation of pressure and damage effects on the hole wall of eccentric uncoupled charge[J].Blasting,36(3):76-83.
包娟,2023. 深层岩体爆破动力响应和爆破特性研究[D].兰州:兰州理工大学.
陈啸林,张智宇,王凯,等,2023.深部岩石爆破裂纹扩展与不耦合装药系数的关系[J].高压物理学报,37(5):137-150.
戴军,2001.柱状装药爆破岩石破碎圈和断裂圈计算[J].辽宁工业大学学报,20(2):144-147.
范勇,吴凡,冷振东,等,2024.径向不耦合装药爆压消峰作用及其对岩石破裂范围影响[J].兵工学报,45(1):131-143.
郭学彬,肖正学,张继春,2006.论爆破地震波在传播过程中的衰减特性[J].中国矿业,15(3):51-53,57.
何富连,肖鹏,来永辉,等,2018.基于偏应力第三不变量的窄煤柱合理宽度确定[J].煤矿安全,49(3):44-47,51.
胡英国,卢文波,陈明,等,2015.岩体爆破近区临界损伤质点峰值震动速度的确定[J].爆炸与冲击,35(4):547-554.
黄佑鹏,王志亮,毕程程,2018.岩石爆破损伤范围及损伤分布特征模拟分析[J].水利水运工程学报,(5):95-102.
姜鹏飞,唐德高,龙源,2009.不耦合装药爆破对硬岩应力场影响的数值分析[J].岩土力学,30(1):275-279.
李晓静,张向阳,张化恳,等,2022.偏心不耦合装药爆破损伤分布特征数值模拟[J].山东建筑大学学报,37(1):8-15.
梁瑞,包娟,周文海,2022. 水电工程边坡炮孔近区岩体爆破损伤特性[J]. 长江科学院院报, 39(8):71-76.
梁瑞,王树江,周文海,等,2019.基于应力与速度时程分析的边坡开挖爆破裂纹扩展研究[J].长江科学院院报,36(12):71-77.
梁为民,周丰峻,2012.不耦合装药结构对岩石爆破的影响[J].北京理工大学学报,32(12):1215-1218,1228.
刘云川,汪旭光,刘连生,等,2009.不耦合装药条件下炮孔初始压力计算的能量方法[J].中国矿业,18(6):104-107,110.
潘强,张继春,石洪超,等,2019.单孔不耦合装药爆破的岩体损伤分布特征研究[J].振动与冲击,38(18):264-269.
饶军应,薛炀皓,沈阳,等,2023.基于RHT模型的层理分布与爆破损伤关联耦合性分析[J].中南大学学报(自然科学版),54(3):1204-1218.
王仲仁,张琦,2006.偏应力张量第二及第三不变量在塑性加工中的作用[J].塑性工程学报,13(3):1-5.
徐颖,孟益平,程玉生,2002.装药不耦合系数对爆破裂纹控制的试验研究[J].岩石力学与工程学报,21(12):1843-1847.
杨仁树,肖成龙,李永亮,等,2020.不耦合偏心装药结构爆破损伤破坏的分形研究[J].振动与冲击,39(12):129-134.
叶志伟,陈明,李桐,等,2021.小不耦合系数装药爆破孔壁压力峰值计算方法[J].爆炸与冲击,41(6):119-129.
尹晓玉,李建功,2022.爆破施工对隧道围岩的稳定性影响分析[J].科技创新与应用,12(28):64-67,71.
张华,高富强,杨军,等,2010.深凹露天爆破震动速度衰减规律实验研究[J].兵工学报,31(增1):275-278.
中国水利学会施工专业委员会爆破学组,1995. 水工建筑物岩石基础开挖工程施工技术规范 [S].北京:水利电力出版社.
宗琦,程兵,汪海波,2019.偏心不耦合装药孔壁压力与损伤效应数值模拟[J].爆破,36(3):76-83.
[1] 甘会莲, 蒋新闻, 陈志伟, 乔永昕, 陈淑华, 王建国. 一体化聚能水压爆破技术在软弱围岩隧道的应用[J]. 黄金科学技术, 2023, 31(6): 944-952.
[2] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[3] 宋春辉, 李祥龙, 王建国, 宋飞. 矿柱爆破回采对胶结充填体损伤影响试验研究[J]. 黄金科学技术, 2020, 28(4): 558-564.
[4] 汪海旭, 宗琦, 汪海波, 王梦想. 煤矿下山巷道水与空气不耦合装药爆破技术对比研究[J]. 黄金科学技术, 2019, 27(5): 747-754.
[5] 王卫华,孙腾飞,刘希涛. 基于地应力和二次损伤的预留光爆层爆破参数研究[J]. 黄金科学技术, 2019, 27(4): 565-572.
[6] 秦世康,陈庆发,尹庭昌. 岩石与岩体冻融损伤内涵区别及研究进展[J]. 黄金科学技术, 2019, 27(3): 385-397.
[7] 梁瑞,俞瑞利,周文海,黄小彬,王建勇,熊征宇. 空气间隔装药爆破模型在矿房回采中的应用[J]. 黄金科学技术, 2019, 27(3): 358-367.
[8] 胡桂英, 刘科伟, 杜鑫, 李萧翰. 光面掏槽爆破技术的研究及其在巷道掘进中的应用[J]. 黄金科学技术, 2018, 26(3): 349-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[9] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[10] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .