img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (2): 318-329.doi: 10.11872/j.issn.1005-2518.2024.02.160

• 采选技术与矿山管理 • 上一篇    下一篇

深井高应力环境下束状组合孔拉槽爆破优化研究

邱泓杰1(),邱贤阳1(),张舒1,陈辉2,史秀志1,沈文博1,陶铁军3,段武全4   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.新疆大学地质与矿业工程学院,新疆 乌鲁木齐 830047
    3.贵州大学矿业学院,贵州 贵阳 550025
    4.中铁贵州工程有限公司,贵州 贵阳 551700
  • 收稿日期:2023-11-29 修回日期:2024-03-06 出版日期:2024-04-30 发布日期:2024-05-21
  • 通讯作者: 邱贤阳 E-mail:215511042@csu.edu.cn;qiuxianyang_csu@163.com
  • 作者简介:邱泓杰(1996-),男,云南楚雄人,硕士研究生,从事充填体稳定性和爆破振动控制等研究工作。215511042@csu.edu.cn
  • 基金资助:
    国家自然科学基金项目“爆破荷载下含分层结构面充填体损伤演化与分部揭露渐变失稳机制”(52374152);中南大学研究生自主探索类创新项目“爆破动载下胶结充填体损伤失稳规律与控制降振技术研究”(1053320221641)

Optimization of Bunch Holes Cutting Blasting in Deep Mine Under High Stress Environment

Hongjie QIU1(),Xianyang QIU1(),Shu ZHANG1,Hui CHEN2,Xiuzhi SHI1,Wenbo SHEN1,Tiejun TAO3,Wuquan DUAN4   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.School of Geological and Mining Engineering, Xinjiang University, Urumqi 830047, Xinjiang, China
    3.Mining College of Guizhou University, Guiyang 550025, Guizhou, China
    4.China Railway Guizhou Engineering Co. , Ltd. , Guiyang 551700, Guizhou, China
  • Received:2023-11-29 Revised:2024-03-06 Online:2024-04-30 Published:2024-05-21
  • Contact: Xianyang QIU E-mail:215511042@csu.edu.cn;qiuxianyang_csu@163.com

摘要:

为探究深井高应力环境下,采场束状组合孔拉槽爆破损伤破裂规律,采用LS-DYNA数值分析软件进行研究。通过建立平面数值模型,分析了无静应力、单向静应力和双向等值静应力3种条件下束状组合孔爆破破裂损伤情况。此外,对不同静应力条件下束状组合孔的孔间距和外围辅助空孔的布置方式进行优化,并进行工程试验验证。研究结果表明:相比无静应力条件,单向静应力和双向等值静应力条件下束状组合孔爆破损伤裂纹扩展受到抑制,静应力越大,抑制作用越显著。工程实践表明,根据静应力的大小调整束状组合孔孔间距和外围辅助孔布置方式,能够获得良好的拉槽爆破破岩效果。

关键词: 爆破, 束状组合孔, 高应力, 孔间距, 损伤, LS-DYNA软件, 深井

Abstract:

The bunch holes,which consist of multiple dense and parallel holes and detonated simultaneously,are widely used in mines because of its high rock-breaking efficiency.With the worldwide depletion of resources in the shallow part of the earth,many mines are transitioning to the deep mining stage,and the influence of the complex high stress environment on the effect of blasting on rock breaking in the deep mining process needs to be further studied.In order to explore the law of blasting damage and fracture of bunch holes cutting blasting in deep mining under high stress stope environment,LS-DYNA finite element numerical analysis software was used to study.Combined with the mine blasting engineering practice,the planar numerical model with the same size as the actual working conditions was established,which contained four charge holes and one auxiliary empty hole.The rupture damage process of the bunch holes under no static stress was analyzed.On this basis,in the case of one-way static stress and two-way equivalent static stress,when the static stress is 20 MPa and 40 MPa respectively,the blasting fracture damage of the bunch holes cutting blasting was analyzed,and the number of failures units of the numerical model under different static stress states was compared. In addition,the hole spacing and the arrangement of peripheral auxiliary holes were optimized under different static stress conditions,and engineering experiments were carried out to verify the reliability of the optimization results by counting the chunk rate of different schemes.The results show that compared with the no static stress condition,the expansion of the bunch holes blasting damage cracks will be suppressed under the unidirectional static stress and bidirectional equivalent static stress conditions.With the increase of static stress,the number of model failure units decreases gradually,and the inhibition of crack extension is more significant.When the static stress reaches 40 MPa,no penetration crack can be formed between the four bunch holes and the center empty hole.In particular,in the bidirectional equivalent static stress state,the inter-hole crack penetration mode of the bunch holes changes from a square penetration to a circular penetration.Practice shows that according to the size of the static stress to adjust the bunch holes spacing and peripheral auxiliary holes arranged way can reduce the rate of large pieces of slot blasting,so as to obtain a good slot blasting rock-breaking effect.

Key words: blasting, bunch holes, high stress, hole spacing, damage, LS-DYNA software, deep well

中图分类号: 

  • TD853

图1

地下矿山束状组合孔爆破示意图"

图2

束状组合孔爆破破岩示意图(雷振等,2021)"

图3

束状组合孔爆破数值模型"

表1

RHT 岩石模型参数"

参数取值参数取值
物质密度ρ0/(kg/m3)2 660雨贡纽系数A2/GPa37.84
孔隙压缩时压力Pel/MPa125雨贡纽系数A3/GPa21.29
孔隙压实时压力Pcomp/GPa6状态方程参数B01.22
孔隙度指数N3.0状态方程参数B11.22
初始孔隙度α00状态方程参数T1/GPa25.7
雨贡纽系数A1/GPa25.7状态方程参数T20
单轴抗压强度fc/MPa167.8参考拉伸应变率εot3e-6
抗拉强度比ft*0.04失效压缩应变率εc3e25
剪压强度比fs*0.21失效拉伸应变率εt3e25
剪切模量G/GPa21.9压缩屈服面参数gc*0.53
失效面参数A2.44拉伸屈服面参数gt*0.7
失效面指数N0.76剪切模量缩减系数ξ0.5
拉压子午比Q00.68初始损伤参数D10.04
罗德角相关系数B0.05损伤参数D21.0
压缩应变率指数βc0.026最小失效应变εpm0.015
拉伸应变率指数βt0.007残余应力强度参数Af0.25
参考压缩应变率εoc3e-5残余应力强度指数nf0.62

塑性流动拉伸压力

PTF

0.001侵蚀塑性应变EPSF2.0
GAMMA0.0

表2

炸药参数及JWL状态方程参数"

参数取值参数取值
ρ/(kg·m-31 320R15.81
D/(m·s-16 690R21.77
PCJ /GPa16ω0.282
A/GPa586E/GPa7.38
B/GPa21.6

图4

束状组合孔同时起爆下爆破损伤破裂过程"

图5

单向静应力下束状组合孔爆破损伤破裂"

图6

不同静应力下束状组合孔爆破的失效单元数量"

图7

双向静应力下束状组合孔爆破损伤破裂"

图8

单向和双向静应力下束状组合孔同时爆破失效单元"

图9

单向静应力为20 MPa时拉槽爆破孔间距优化"

图10

单向静应力为40 MPa时拉槽爆破孔间距优化"

图11

单向静应力拉槽爆破炮孔布置优化"

表3

沙溪铜矿矿岩物理力学性质"

岩性地层密度/(kg·m-3杨氏模量/GPa抗压强度/MPa泊松比抗拉强度/MPaP波波速/(m·s-1RQD/%RMR
粉砂岩侏罗系2 73042.586.40.258.55 401.476751
泥质粉砂岩志留系2 76043.067.40.243.75 715.954355
石英闪长斑岩岩浆岩2 70051.96119.80.267.25 599.226662

图12

爆破试验区域"

图13

装药结构示意图"

图14

高应力拉槽区中孔爆破块度"

Chen He,2022.Study on Blasting Mechanism and Enhanced Rock Fragmentation Model of Bunch-hole[D].Beijing:University of Science and Technology Beijing.
Chen He,2023.Optimal holes spacing of bunch-holes[J].Nonferrous Metals(Mining Section),75(4):78-81,96.
Chen He, Wang Xuguang,2023.Study on blasting effect and strengthening fragment mechanism of bunch-holes[J].Nonferrous Metals,13(4):120-126.
Cui Xinnan, Wang Xuguang, Chen He,et al,2019.Experimental research on bunch-hole double sublevels in-hole delay blasting[J].Nonferrous Metals(Mining Section),71(2):82-85.
Jin Peng, Liu Kewei, Li Xudong,et al,2021.Numerical simulation study of crack propagation in deep rock mass under water-coupling blasting[J].Gold Science and Technology,29(1):108-119.
Lei Zhen, Zhang Zhiyu, Huang Yonghui,et al,2021.An investigation of energy consumption variation in rock blasting breaking with the resistance line[J].Explosion and Shock Waves,41(7):151-160.
Li Linjun,2022.Research on Raise Excavation Technology by Long Hole Blasting Considering Hole Deviation [D].Changsha:Central South University.
Li Qing, Guo Yang, Xu Wenlong,et al,2019a.Investigation on the dynamic fracture property of oblique open-joints under bunch-hole explosion[J].Journal of Vibration and Shock,38(6):151-158.
Li Qing, Zhang Suixi, Wan Minghua,et al,2019b.Study on the influence of length-diameter ratio on the mechanical characteristics of cracks at the end of linear charges[J].Journal of Mining Science and Technology,4(2):112-119.
Li Xiaohan, Liu Kewei, Yang Jiacai,et al,2019.Analysis of blasting vibration effects under different ground stress[J].Gold Science and Technology,27(2):241-248.
Liu Jiandong, Chen He, Sun Zhongming,et al,2011.Study and application of efficient blasting technology of parallel dense bundle deep holes[J].Engineering Blasting,17(2):23-25,64.
Liu Jiandong, Chen He, Wang Huxin,et al,2012.Study and application on efficient mining technology for residual mine based on bundle boles large-scale blasting[J].China Mining Magazing,21(4):76-78,86.
Luo S, Yan P, Lu W B,et al,2021.Effects of in-situ stress on blasting damage during deep tunnel excavation[J].Arabian Journal for Science and Engineering,46(11):11447-11458.
Ma Yanjun, Yang Jun,2021.The practice of cutting slotting blasting technology in high stage mine room of Tieshan mining area[J].Modern Mining,37(12):144-148.
Pang Ningbo, Yang Yongkang,2023.Numerical simulation on damage evolution of rock porous blasting under in-situ stress[J].Mining Research and Development,43(10):119-125.
Peng J, Zhang F, Du C,et al,2020.Effects of confining pressure on crater blasting in rock-like materials under electric explosion load[J].International Journal of Impact Engineering,139:103534.
Qiu Xianyang,2018.Research on the Mechanisms and Application of Precise Short-delay Blasting[D].Changsha:Central South University.
Qiu Xianyang, Shen Wenbo, Zhang Zongguo,et al,2023.Effect of in-situ stresses on fracturing performance of crater blasting under different resistance lines[J].Journal of Central South University,30(8):2686-2700.
Technology Center of Tongling Nonferrous Metals Group Holding Co.,Ltd., Central South University,Anhui Province Tongguan(Lujiang)Mining Co.,Ltd.,2014.Measurement study of stress relief method in the stress field of raw rock at Shaxi copper mine[R].Changsha:Central South University.
Wen Chen, Qiao Qiuqiu, Qiu Xianyang,et al,2023.Simulation of crack propagation induced by short delay blasting with blast holes in a combined fan pattern for deep well[J].Mining and Metallurgical Engineering,43(1):26-31.
Xiao S Y, Su L J, Jiang Y J,et al,2019.Numerical analysis of hard rock blasting unloading effects in high in situ stress fields[J].Bulletin of Engineering Geology and the Environment,78:867-875.
Xie L X, Lu W B, Zhang Q B,et al,2017.Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J].Tunnelling and Underground Space Technology,66:19-33.
Xie Liangbo, Li Erbao, Zhang Xiliang,et al,2020.Test study on optimal values of blasting parameters of combined holes under lateral load [J].Metal Mine,49(7):33-39.
Xiong Changran, Chen He,2024.Attenuation law of bunch-holes and equivalent large hole blasting stress wave in jointed rock mass[J].Mining and Metallurgy,33(1):1-8.
Yang Haitao, Li Erbao, Yi Haibao,et al,2021.Numerical simulation research on rock breaking law of combined hole blasting under different stress conditions[J].Blasting,38(2):88-94.
Yang Jianhua, Wu Zenan, Yao Chi,et al,2020.Influences of in-situ stress on blast-induced rock fracture and seismic waves[J].Journal of Vibration and Shock,39(13):64-70,90.
Yang L Y, Ding C X,2018.Fracture mechanism due to blast-imposed loading under high static stress conditions[J].International Journal of Rock Mechanics and Mining Sciences,107:150-158.
Yi C, Sjöberg J, Johansson D,2017.Numerical modelling for blast-induced fragmentation in sublevel caving mines[J].Tunnelling and Underground Space Technology,68:167-173.
Zhang F, Yan G, Peng J,et al,2020.Experimental study on crack formation in sandstone during crater blasting under high geological stress[J].Bulletin of Engineering Geology and the Environment,79:1323-1332.
Zhang S A, Qiu X Y, Shi X Z,et al,2022.Influence of detonator delay scatter on rock fragmentation by bunch-holes blasting[J].Geomechanics and Geophysics for Geo-Energy and Geo-Resources,8(5):136.
Zhao Xingdong, Song Jingyi, Zhou Xin,et al,2023.Optimization of parameters for medium-deep hole slot blasting during mining blasting[J].Explosive Materials,52(5):50-56,64.
Zhi Wei, Qiu Xianyang, Li Xiaoyuan,et al,2022.Study on vibration attenuation characteristics of blasting with bunch-holes[J].Mining Technology,22(4):173-178.
陈何,2022.束状组合孔爆破机理及增强破岩作用模型研究[D].北京:北京科技大学.
陈何,2023.束状组合孔炮孔最佳间距的研究[J].有色金属(矿山部分),75(4):78-81,96.
陈何,汪旭光,2023.束状组合孔爆破增强破岩作用机理研究[J].有色金属工程,13(4):120-126.
崔新男,汪旭光,陈何,等,2019.束状组合孔双分层孔内延期爆破试验研究[J].有色金属(矿山部分),71(2):82-85.
金鹏,刘科伟,李旭东,等,2021.深部岩体水耦合爆破裂纹扩展数值模拟研究[J].黄金科学技术,29(1):108-119.
雷振,张智宇,黄永辉,等,2021.岩石爆破破碎能耗随抵抗线的变化规律[J].爆炸与冲击,41(7):151-160.
李林军,2022.考虑炮孔偏斜的深孔爆破成井技术研究[D]. 长沙:中南大学.
李清,郭洋,徐文龙,等,2019a.束状炮孔爆破倾斜张开节理的动态断裂特性研究[J].振动与冲击,38(6):151-158.
李清,张随喜,万明华,等,2019b.长径比对束状炮孔端部裂纹力学特征影响的研究[J].矿业科学学报,4(2):112-119.
李萧翰,刘科伟,杨家彩,等,2019.不同地应力下爆破振动效应分析[J].黄金科学技术,27(2):241-248.
刘建东,陈何,孙忠铭,等,2011.平行密集束状深孔高效爆破技术研究及应用[J].工程爆破,17(2):23-25,64.
刘建东,陈何,王湖鑫,2012.束状孔大量落矿残矿高效回采工艺技术研究与应用[J].中国矿业,21(4):76-78,86.
马彦军,杨俊,2021.铁山矿区采场高阶段矿房切割拉槽爆破技术实践[J].现代矿业,37(12):144-148.
庞宁波,杨永康,2023.地应力下岩石多孔爆破损伤演化数值模拟[J].矿业研究与开发,43(10):119-125.
邱贤阳,2018.精确短延时爆破作用机理及技术应用研究[D].长沙:中南大学.
邱贤阳,沈文博,张宗国,等,2023.不同抵抗线下地应力对漏斗爆破破碎的影响[J].中南大学学报,30(8):2686-2700.
铜陵有色金属集团控股有限公司技术中心,中南大学,安徽铜冠(庐江)矿业有限公司, 2014.沙溪铜矿区原岩应力场应力解除法测量研究[R].长沙:中南大学.
温晨,乔秋秋,邱贤阳,等,2023.深井扇形组合孔短延时爆破裂纹扩展模拟研究[J].矿冶工程,43(1):26-31.
谢亮波,李二宝,张西良,等,2020.侧向荷载下组合孔爆破参数优化取值试验研究[J].金属矿山,49(7):33-39.
熊常然,陈何,2024.束状孔与当量大孔爆破应力波在节理岩体中的衰减规律[J].矿冶,33(1):1-8.
杨建华,吴泽南,姚池,等,2020.地应力对岩石爆破开裂及爆炸地震波的影响研究[J].振动与冲击,39(13):64-70,90.
杨海涛,李二宝,仪海豹,等,2021.不同应力条件下组合孔爆破破岩规律数值模拟研究[J].爆破,38(2):88-94.
赵兴东,宋景仪,周鑫,2023.矿房回采爆破时中深孔拉槽爆破的参数优化研究[J].爆破器材,52(5):50-56,64.
支伟,邱贤阳,李小元,等,2022.束状组合孔爆破振动衰减特性研究[J].采矿技术,22(4):173-178.
[1] 郭忠磊, 崔嵛, 王春龙. 局部制冷降温技术在井下长距离掘进中的应用[J]. 黄金科学技术, 2024, 32(5): 916-925.
[2] 李振阳, 张宝岗, 熊信, 杨承业, 白玉奇. 基于PSO-XGBoost的露天矿山PPV预测模型研究[J]. 黄金科学技术, 2024, 32(4): 620-630.
[3] 李想, 杨建国, 杨博, 李杰林, 周科平. 微波照射下大理岩孔隙结构变化特征及能量演化规律[J]. 黄金科学技术, 2024, 32(3): 470-480.
[4] 李祥龙, 余林, 黄原明, 陈浩, 赵艳伟. 基于VMD-HHT的井下预裂爆破振动效应分析[J]. 黄金科学技术, 2024, 32(3): 501-510.
[5] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[6] 梁瑞, 曹晓睿, 周文海, 楼晓明, 胡才智, 王树江. 不耦合装药系数对岩体爆破损伤的影响[J]. 黄金科学技术, 2024, 32(2): 306-317.
[7] 代树红, 张战军, 柳凯, 郑昊, 孙清林. 基于PEMD-MPE算法的露天矿爆破振动信号降噪方法[J]. 黄金科学技术, 2024, 32(1): 82-90.
[8] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[9] 甘会莲, 蒋新闻, 陈志伟, 乔永昕, 陈淑华, 王建国. 一体化聚能水压爆破技术在软弱围岩隧道的应用[J]. 黄金科学技术, 2023, 31(6): 944-952.
[10] 邓红卫, 罗亮. 基于SMA算法优化随机森林的PPV预测模型[J]. 黄金科学技术, 2023, 31(4): 624-634.
[11] 张君, 杨清平, 刘芳芳, 张金钟, 徐刚强, 李晓松. 深井规模化开采矿山与分布式微震监测系统设计研究[J]. 黄金科学技术, 2023, 31(4): 659-668.
[12] 王文才,李俊鹏,王创业,陈世江,王鹏. 外荷载下青砂岩声发射特征及损伤演化规律[J]. 黄金科学技术, 2023, 31(3): 516-530.
[13] 李杰林,王京瑶,肖益盖,李小双. 不同应力路径下岩石细观力学性能离散元研究[J]. 黄金科学技术, 2023, 31(1): 102-112.
[14] 杜广盛,陈世江,武海龙. 温度影响下花岗岩宏、细观力学性质演化规律[J]. 黄金科学技术, 2022, 30(6): 935-947.
[15] 黄晓辉,刘科伟,周占星,马泗洲,郭腾飞. 高温后红砂岩压剪下声发射及其微观特性研究[J]. 黄金科学技术, 2022, 30(5): 764-777.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!