img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (2): 330-344.doi: 10.11872/j.issn.1005-2518.2024.02.166

• 采选技术与矿山管理 • 上一篇    下一篇

超大断面扁平结构隧道施工参数优化研究

刘宽1(),莫冠旺2(),李响2(),沈平欢1,万波1,刘建坤2   

  1. 1.上海隧道工程有限公司,上海 200032
    2.中山大学土木工程学院,广东 珠海 519000
  • 收稿日期:2023-12-07 修回日期:2024-01-24 出版日期:2024-04-30 发布日期:2024-05-21
  • 通讯作者: 莫冠旺,李响 E-mail:1833458942@qq.com;mogw@mail2.sysu.edu.cn;lixiang85@mail.sysu.edu.cn
  • 作者简介:刘宽(1976-),男,内蒙古巴盟人,高级工程师,从事隧道工程研究工作。1833458942@qq.com
  • 基金资助:
    上海隧道工程有限公司横向课题“软弱地层超大断面扁平结构矿山法隧道施工关键技术研究”(2022-sk-19)

Optimization of the Construction Parameters of Super-large Section Flat Structure Tunnel

Kuan LIU1(),Guanwang MO2(),Xiang LI2(),Pinghuan SHEN1,Bo WAN1,Jiankun LIU2   

  1. 1.Shanghai Tunnel Engineering Co. , Ltd. , Shanghai 200032, China
    2.School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
  • Received:2023-12-07 Revised:2024-01-24 Online:2024-04-30 Published:2024-05-21
  • Contact: Guanwang MO,Xiang LI E-mail:1833458942@qq.com;mogw@mail2.sysu.edu.cn;lixiang85@mail.sysu.edu.cn

摘要:

基于某超大断面扁平结构隧道的上下台阶法施工段,采用数值模拟方法研究在该工程地质条件下台阶长度和锚杆纵距2种施工参数改变带来的影响。利用数值模型对不同台阶长度(分别为30,40,50,60 m)和不同锚杆纵距(分别为1.0,1.5,2.0 m)情况进行研究,对隧洞周边岩体中塑性区、围岩应力和围岩变形情况的分布规律进行分析,结合数值结果和现场监测数据验证了施工现场采用台阶长度为50 m和锚杆纵距为1 m的施工参数较合理。该研究成果可为超大断面扁平结构隧道的开挖和支护施工参数的合理选取提供参考。

关键词: 超大断面隧道, 公路隧道, 数值模拟, 台阶法, 台阶长度, 锚杆纵距

Abstract:

As the demand for transportation increases in China,more and more highway tunnels adopt the form of super-large section.However,there is still a lack of clear guidance for the design and construction of super-large section tunnels with four lanes or more in the current highway tunnel specifications. There is still a need for in-depth research on the section shape,construction methods,and construction mechanics of super-large section tunnels. Existing research indicates that the use of the benching method for excavation construction of super-large section tunnels is feasible. To obtain the optimized schemes for bench length and anchor rod spacing,numerical simulation was performed in this study to investigate seven different scenarios based on the upper and lower bench construction sections of a certain super-large section flat structure tunnel.The scenarios included bench lengths of 30 m,40 m,50 m,and 60 m,as well as anchor rod longitudinal spacings of 1.0 m,1.5 m,and 2.0 m. The distribution patterns of the plastic zone in the surrounding rock mass,the stress of the surrounding rock,and the deformation of the surrounding rock were analyzed.The study results indicate that the overall maximum principal stress around the tunnel shows a trend of “arch foot>arch waist>arch crown”.An increase in bench length or anchor rod spacing leads to a significant increase in the maximum principal stress at the arch crown. Overall,the settlement and horizontal convergence values of the tunnel arch crowns increase with the increase in bench length. An increase in anchor rod spacing requires other support structures in the initial support to exert stronger control over surrounding rock deformation,potentially leading to the destruction of the support structure. Based on the numerical results and on-site monitoring data,considering factors such as construction efficiency and rock stability,the optimized scheme with a bench length of 50 m and an anchor rod spacing of 1 m was applied in the construction site.The results of this research has high reference value for the optimal selection of excavation and support parameters for super-large section flat structure tunnels.

Key words: super-large section tunnel, highway tunnel, numerical simulation, bench cut method, bench length, longitudinal distance of anchor bolt

中图分类号: 

  • U455.4

图1

隧道工程位置概况1.深断裂;2.大断裂;3.一般断裂"

图2

隧道地形平面图及围岩剖面图"

图3

隧道Ⅲ级围岩段数值模型"

表1

隧道围岩参数"

围岩参数数值围岩参数数值
重度/(kN·m-32 600内摩擦角/(°)40
弹性模量/GPa6黏聚力/MPa0.1
泊松比0.3抗拉强度/MPa1

图4

完整初期支护示意图"

表2

初期支护参数"

支护类型重度/(kN·m-3弹性模量/GPa泊松比
砂浆锚杆7 8502060.25
钢拱架7 8502060.25
喷射混凝土2 400280.20

图5

隧道断面观测点示意图"

图6

隧洞模型开挖方案"

图7

不同台阶长度模型的塑性区"

图8

不同台阶长度模型的最大主应力云图(单位:kPa,正值表示拉应力)"

表3

隧道周边不同围岩部位最大主应力"

围岩部位30 m台阶长度40 m台阶长度50 m台阶长度60 m台阶长度
左洞右洞左洞右洞左洞右洞左洞右洞
拱顶-17.9-8.1-32.4-8.9-45.5-10.9-66.4-10.5
左侧拱腰-313.4-290.6-313.9-291.3-315.0-291.2-320.5-291.4
右侧拱腰-302.3-288.1-303.7-288.3-304.5-287.9-305.9-288.5
左侧拱脚-408.8-422.9-411.5-427.9-414.3-428.3-416.4-430.0
右侧拱脚-392.3-394.4-395.6-396.1-396.6-396.9-398.3-398.7
拱底中点76.982.875.481.774.881.175.480.4

图9

不同台阶长度模型左洞最大主应力柱状图"

图10

不同台阶长度模型右洞最大主应力柱状图"

表4

不同观测断面观测点1的竖向位移值"

桩号30 m台阶长度40 m台阶长度50 m台阶长度60 m台阶长度
ZK6+790-4.232-4.239-4.246-4.254
ZK6+800-4.274-4.282-4.291-4.301
ZK6+810-4.392-4.399-4.412-4.423
ZK6+820-4.527-4.544-4.552-4.559
ZK6+830-4.637-4.660-4.687-4.683
ZK6+840-4.708-4.724-4.734-4.762
ZK6+850-4.677-4.688-4.691-4.793
YK6+810-3.730-3.745-3.749-3.752
YK6+820-3.766-3.778-3.785-3.790
YK6+830-3.889-3.902-3.908-3.912
YK6+840-4.038-4.051-4.057-4.061
YK6+850-4.167-4.179-4.184-4.186
YK6+860-4.242-4.253-4.257-4.259
YK6+870-4.247-4.256-4.261-4.262

表5

不同观测断面测线2-3与测线4-5的水平收敛平均值"

桩号30 m台阶长度40 m台阶长度50 m台阶长度60 m台阶长度
ZK6+7901.0121.0181.0221.023
ZK6+8000.9540.9600.9690.975
ZK6+8100.9740.9881.0031.012
ZK6+8201.0321.0191.0401.045
ZK6+8301.0981.0731.0581.067
ZK6+8401.1441.1401.1051.083
ZK6+8501.3011.2981.2871.193
YK6+8101.1351.1411.1481.149
YK6+8201.1131.1201.1271.129
YK6+8301.1671.1801.1861.189
YK6+8401.2151.2271.2291.229
YK6+8501.2491.2551.2561.258
YK6+8601.2771.2811.2871.288
YK6+8701.4391.4381.4371.448

图11

不同台阶长度模型的拱顶沉降"

图12

不同台阶长度模型的水平收敛值"

图13

不同锚杆纵距模型的塑性区"

图14

不同锚杆纵距模型的最大主应力云图(单位:kPa,正值表示拉应力)"

表6

隧道周边不同围岩部位最大主应力"

围岩部位1.0 m锚杆纵距1.5 m锚杆纵距2.0 m锚杆纵距
左洞右洞左洞右洞左洞右洞
拱顶-45.5-10.9-44.2-11.7-55.6-13.4
左侧拱腰-315.0-291.2-315.2-290.7-315.5-290.9
右侧拱腰-304.5-287.9-302.3-287.8-302.8-287.9
左侧拱脚-414.3-428.3-413.0-428.6-413.2-428.6
右侧拱脚-396.6-396.9-396.4-397.3-396.9-397.1
拱底中点74.881.174.780.974.881.0

图15

不同锚杆纵距模型左洞最大主应力柱状图"

图16

不同锚杆纵距模型右洞最大主应力柱状图"

图17

不同锚杆纵距情况下隧洞的拱顶沉降量"

图18

不同锚杆纵距情况下隧洞的水平收敛"

表7

不同观测断面观测点1的竖向位移值"

桩号1.0 m锚杆纵距1.5 m锚杆纵距2.0 m锚杆纵距
ZK6+790-4.246-4.256-4.246
ZK6+800-4.291-4.297-4.293
ZK6+810-4.412-4.415-4.414
ZK6+820-4.552-4.555-4.557
ZK6+830-4.687-4.686-4.687
ZK6+840-4.734-4.731-4.726
ZK6+850-4.691-4.692-4.702
YK6+810-3.749-3.749-3.744
YK6+820-3.785-3.778-3.776
YK6+830-3.908-3.908-3.900
YK6+840-4.057-4.059-4.048
YK6+850-4.184-4.181-4.174
YK6+860-4.257-4.254-4.243
YK6+870-4.261-4.261-4.256

表8

不同观测断面测线2-3与测线4-5的水平收敛平均值"

桩号1.0 m锚杆纵距1.5 m锚杆纵距2.0 m锚杆纵距
ZK6+7901.0221.0211.022
ZK6+8000.9690.9700.971
ZK6+8101.0031.0051.005
ZK6+8201.0401.0381.038
ZK6+8301.0581.0581.056
ZK6+8401.1051.1111.110
ZK6+8501.2871.2961.298
YK6+8101.1481.1461.146
YK6+8201.1271.1271.127
YK6+8301.1861.1831.180
YK6+8401.2291.2281.228
YK6+8501.2561.2541.257
YK6+8601.2871.2841.284
YK6+8701.4371.4391.444
Cai Dongming,2021. Rationality analysis of initial support parameters of ultra-large section mountain tunnel[J].Journal of Municipal Technology,39(1):17-20.
China First Highway Engineering Co.,Ltd,2020. Technical specifications for construction of highway tunnel: [S].Beijing:China First Highway Engineering Co.,Ltd.
China Merchants Chongqing Communications Technology Research and Design Institute Co.,Ltd,2018. Code for design of highway tunnels: [S].Chongqing:China Merchants Chongqing Communications Technology Research and Design Institute Co.,Ltd.
Guo Xinxin, Wang Bo, Wang Yongqi,et al, 2019. Reasonable value of flat rate in four-lane tunnel with Ⅲ class surrounding rock[J].Chinese Journal of Underground Space and Engineering,15(6):1792-1799.
Li Heyin, Gao Jingming, Li Yanfeng,et al,2024. Research on reasonable construction method of grade Ⅳ surrounding rock for single-hole four-lane super-span highway tunnel[J/OL].Journal of China and Foreign Highway:1-12[2024-01-13]..
Li Lue,2021. Optimization design of inner contour flattening ratio of large-span tunnel [J]. Science and Technology Innovation and Application,11(13):96-98.
Li Xiangbing, Liang Bo, Lu Siyuan,2022. Research on construction parameters of double side heading method considering multiple factors[J].Hazard Control in Tunnelling and Underground Engineering,4(2):39-48.
Lin Kefu, Xiang Yanyong,2021.Research on the application of benching tunneling method construction technology in hig-hway tunnel project—Taking Jialu tunnel as an example[J].Tunnel Construction,41(Supp.1):199-206.
Liu Bo, Han Yanhui,2005. FLAC Principle,Example and Application Guide[M].Beijing:People’s Communications Publishing House.
Liu Daoping,2021. Characteristics and Control of Construction Mechanical Response of Surrounding Rock of Super Large Section Tunnel[D].Beijing:Beijing Jiaotong University.
Ma Lianyou,2021.Formulation of flattening rate of super large section tunnel based on the investigation project[J].Special Structures,38(4):42-46.
Mei Yu, Li Kailei, Lin Zhongchuan,et al,2023.Research on con-struction method optimization of long-span flat four-lane soft rock tunnel[J].Transportation World,(11):153-156,159.
Peng Bo,2021. Research on numerical simulation and optimization of excavation method for flat structure tunnel with super-large section[J].Northern Communications,(10):78-82.
Qiao Gang, Wang Le, Quan Shuyan,et al,2022. Comparative study on construction methods of super large section tunnel[C]//2022 Proceedings of the Academic Exchange Conference on Industrial Construction.Beijing:Industrial Construction.
Qu Haifeng,2009. An overview on construction and research of super-large cross-section tunnels with low height-span ratios[J].Tunnel Construction,29(2):166-171.
Qu Huisen,2021. Research on Construction Mechanical Behavior of Highway Tunnel with Super Large Cross Section[D].Beijing:Beijing Jiaotong University.
Ran Longzhou,2021.Discussion on construction method of shallow buried super long span highway tunnel[J].Shanxi Architecture,47(14):145-147.
Wang Feng, Zhang Yangyu, Tao Jiaqing,et al,2024. Research on construction parameters of half step CD method for slotting the side walls of large span soft rock tunnel[J/OL].Railway Standard Design:1-11[2024-01-13]..
Wang Xiaosuo,2019.Study on Excavation Method and Cons-truction Parameters of Super-Large Section Highway Tun-nel of Grade Ⅳ Surrounding Rock[D].Beijing:Beijing Jiaotong University.
Zhang Junru, Wu Jie, Yan Congwen,et al,2020.Construction technology of super-large section of highway tunnels with four or more lanes in China[J].China Journal of Highway and Transport,33(1):14-31.
Zhao Wei, Shi Yalong,2020.Numerical simulation analysis of construction mechanical behavior of shallow-buried bias tunnel with large cross section[J].Shanxi Architecture,46(4):122-124.
蔡东明,2021.超大断面山岭隧道初期支护参数合理性分析[J].市政技术,39(1):17-20.
郭新新,汪波,王永琪,等,2019.Ⅲ级围岩四车道隧道扁平率的合理取值[J].地下空间与工程学报,15(6):1792-1799.
黎略,2021.大跨度隧道内轮廓扁平率优化设计[J].科技创新与应用,11(13):96-98.
李合银,高景明,李炎峰,等,2024.单洞四车道超大跨度公路隧道Ⅳ级围岩合理施工方法研究[J/OL].中外公路:1-12[2024-01-13]..
李相兵,梁波,鲁思源,2022.考虑多因素影响的双侧壁导坑法施工参数研究[J].隧道与地下工程灾害防治,4(2):39-48.
林可夫,项彦勇,2021.深埋富水岩体隧道三台阶法施工数值模拟和参数优化——以正盘台隧道工程为例[J].隧道建设,41(增1):199-206.
刘波,韩彦辉,2005. FLAC原理、实例与应用指南[M].北京:人民交通出版社.
刘道平,2021. 超大断面隧道围岩施工力学响应特征及控制[D].北京:北京交通大学.
马连友,2021.基于调研工程对隧道超大断面扁平率的拟定[J].特种结构,38(4):42-46.
梅宇,李凯雷,林中川,等,2023.大跨度扁平四车道软岩隧道施工工法优化研究[J].交通世界,(11):153-156,159.
彭波,2021.超大断面扁平结构隧道开挖方法数值模拟及优化研究[J].北方交通,(10):78-82.
乔钢,王乐,全树言,等,2022.超大断面隧道施工工法对比研究[C]//2022年工业建筑学术交流会论文集.北京:工业建筑杂志社.
曲海锋,2009.扁平特大断面隧道修筑及研究概述[J].隧道建设,29(2):166-171.
屈慧森,2021. 超大断面公路隧道施工力学行为研究[D].北京:北京交通大学.
冉龙洲,2021.浅埋超大跨度公路隧道施工工法探讨[J].山西建筑,47(14):145-147.
王峰,张洋语,陶家清,等,2024.大跨软岩隧道边墙开槽半步CD法施工参数研究[J/OL].铁道标准设 计:1-11[2024-01-13]..
王小锁,2019. Ⅳ级围岩超大断面公路隧道开挖方法与施工参数研究[D].北京:北京交通大学.
张俊儒,吴洁,严丛文,等,2020.中国四车道及以上超大断面公路隧道修建技术的发展[J].中国公路学报, 33(1):14-31.
招商局重庆交通科研设计院有限公司,2018. 公路隧道设计规范: [S].重庆:招商局重庆交通科研设计院有限公司.
赵卫,师亚龙,2020.浅埋偏压大断面暗挖隧道施工力学行为数值模拟分析[J].山西建筑,46(4):122-124.
中交一公局集团有限公司,2020. 公路隧道施工技术规范: [S].北京:中交一公局集团有限公司.
[1] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[2] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[3] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[4] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[5] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[6] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[7] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[8] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[9] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[10] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
[11] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
[12] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[13] 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448.
[14] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[15] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[9] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[10] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .