黄金科学技术 ›› 2024, Vol. 32 ›› Issue (2): 345-355.doi: 10.11872/j.issn.1005-2518.2024.02.150
Qinghua GU1,2(),Qiong ZHOU1,2(),Dan WANG1,2
摘要:
露天矿区场景复杂,行车障碍物检测受扬尘和颗粒物等粉尘噪声干扰严重,难以准确识别障碍物,尤其是光线较差的夜间,不利于做出正确决策,从而影响无人作业的安全性和整体效率。针对以上问题,提出了一种基于YOLOv8n模型的露天矿区行车障碍物检测算法YOLOv8n-Enhanced。该算法主要从3个方面进行了改进,具体包括:首先,针对受粉尘噪声干扰严重和夜间光线不足的问题,提出了C2fCA模块结构,提高了模型特征提取能力;其次,使用轻量级卷积技术GSConv和VoV-GSCSP模块,减轻模型复杂性,实现检测器更高的计算成本效益;最后,使用WIOU损失函数,提高了模型泛化能力。试验结果表明:改进算法在保持实时性的前提下,可将YOLOv8n的平均精度(mean Average Precision,mAP)分别提高1.8%和2.6%,实现白天与夜间场景下不同尺度的障碍物识别。
中图分类号:
Bochkovskiy A, Wang C, Liao H M,2020.YOLOv4:Optimal speed and accuracy of object detection[J].ArXiv:. | |
Dong Lijuan,2023.Research on Mine Roadway Obstacle Detection Based on Infrafed Binocular Vision[D].Xi’an:Xi’an Unversity of Architecture and Technology. | |
Fan Q, Huang H, Guan J,et al,2023.Rethinking local perception in lightweight vision transformer[J].ArXiv: . | |
Girshick R,2015.Fast R-CNN[C]//Proceeding of the IEEE International Conference on Computer Vision.Piscataway:IEEE Press: 1440-1448. | |
Girshick R, Donahue J, Darrell T,et al,2014.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceeding of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press: 580-587. | |
Li H, Li J, Wei H,et al,2022.Slim-neck by GSConv:A better design paradigm of detector architectures for autonomous vehicles[J].ArXiv: . | |
Liu W, Anguelov D,Erhabd,et al,2016.SSD:Single Shot MultiBox Detector[M]//Computer Vision-ECCV 2016.Cham:Springer International Publishing: 21-37. | |
Liu Yongfeng,2022.Research on Nighttime Road Obstacle Image Semantic Segmentation Based on Attention Mechanism[D].Changsha:Central South University. | |
Pathak A R, Pandey M, Rautaray S,2018.Application of deep learning for object detection[J].Procedia Computer Science,132:1706-1717. | |
Qin Xiaohui, Huang Qidong, Chang Dengxiang,et al,2023a.Object detection method for open-pit mine based on improved YOLOv5[J].Journal of Hunan University(Natural Sciences Edition),50(2):23-30. | |
Qin Xuebin, Xue Yuqiang, Jing Ningbo,et al,2023b.Research on front obstacle detection algorithm for autonomous mining trucks in open-pit coal mines [J/OL].Metal Mine:1-12 [2023-08-14].. | |
Redmon J, Divvala S K, Girshick R B,2015.You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),June 27-30,2016,Las Vegas,NV,USA:779-788. | |
Redmon J, Farhadi A,2018.YOLOv3:An incremental improvement[J].ArXiv:. | |
Ren S, He K, Girshick R,et al,2016.Faster R-CNN:Towards real time object detection with region proposal networks [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,39(6):1137-1149. | |
Ruan Shunling, Li Shaobo, Gu Qinghua,et al,2023.Road obstacle detection in open-pit mining area based on two-way feature fusion[J].Journal of China Coal Society,48(3):1425-1438. | |
Ruan Shunling, Li Shaobo, Lu Caiwu,et al,2021.Road negative obstacle detection in open-pit mining areas with multi-scale feature fusion[J].Journal of China Coal Society,46(Supp.2):1170-1179. | |
Tong Z, Chen Y, Xu Z,et al,2023.Wise-IoU:Bounding box regression loss with dynamic focusing mechanism[J].Ar Xiv:2301.10051. | |
Wang H, Yu Y, Cai Y,et al,2019.A comparative study of state-of-the-art deep learning algorithms for vehicle detection [J].IEEE Intelligent Transportation Systems Magazine,11(2):82-95. | |
Wang Jinghua, Wang Liguan, Bi Lin,2021.Obstacle detection technology of mine electric locomotive driverless based on computer vision technology[J].Gold Science and Technology,29(1):136-146. | |
Zhang Rui, Gao Shibo, Zhao Xia,et al,2023.Nighttime vehicle object detection algorithm for unmanned driving based on improved YOLOv5s[J].Electronic Measurement Technology,46(17):87-93. | |
Zhang Xi, Liang Bin, Yu Miao,et al,2022.Research on the current situation and development trend of unmanned driving transportation technology in open-pit mines[J].Coal Engineering,54(6):132-138. | |
Zheng Z, Wang P, Liu W,et al,2020.Distance-IoU loss:Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Palo Alto,California:AAAI Press: 12993-13000. | |
Zhu X, Lyu S, Wang X,et al,2021.TPH-YOLOv5:Improved YOLOv5 based on transformer prediction head for Object detection on drone-captured scenarios[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops(ICCVW),Montreal,B C,Canada,2021,pp.2778-2788.doi:10.1109/ICCVW 54120.2021.00312 .
doi: 10.1109/ICCVW 54120.2021.00312 |
|
董莉娟,2023.基于红外双目视觉的矿井巷道障碍检测研究[D].西安:西安建筑科技大学. | |
刘永锋,2022.融合注意力机制的夜间道路障碍物图像语义分割方法研究[D].长沙:中南大学. | |
秦晓辉,黄启东,常灯祥,等,2023.基于改进YOLOv5的露天矿山目标检测方法[J].湖南大学学报(自然科学版),50(2):23-30. | |
秦学斌,薛宇强,景宁波,等,2023.露天煤矿自动驾驶矿卡车前障碍物检测算法研究[J/OL].金属矿山:1-12[2023-08-14].. | |
阮顺领,李少博,顾清华,等,2023.基于双向特征融合的露天矿区道路障碍检测[J].煤炭学报,48(3):1425-1438. | |
阮顺领,李少博,卢才武,等,2021.多尺度特征融合的露天矿区道路负障碍检测[J].煤炭学报报,46(增2):1170-1179. | |
王京华,王李管,毕林,2021.基于计算机视觉技术的矿井电机车无人驾驶障碍物检测技术[J].黄金科学技术,29(1):136-146. | |
张蕊,高诗博,赵霞,等,2023.基于改进YOLOv5s的无人驾驶夜间车辆目标检测算法[J].电子测量技术,46(17):87-93. | |
张晞,梁斌,于淼,等,2022.露天矿山无人驾驶运输技术现状及发展趋势研究[J].煤炭工程,54(6):132-138. |
[1] | 顾清华, 杜艺凡, 李萍丰, 王丹. 基于加权双向特征融合的矿区道路落石检测[J]. 黄金科学技术, 2023, 31(6): 953-963. |
[2] | 阮顺领,董莉娟,卢才武,顾清华. 基于RCR _YOLOv4的矿井巷道红外障碍检测研究[J]. 黄金科学技术, 2022, 30(4): 603-611. |
[3] | 王鹏飞,毕林,王李管. 露天矿无人驾驶矿卡速度规划研究[J]. 黄金科学技术, 2022, 30(3): 460-469. |
[4] | 王京华,王李管,毕林. 基于计算机视觉技术的矿井电机车无人驾驶障碍物检测技术[J]. 黄金科学技术, 2021, 29(1): 136-146. |
|