img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (2): 356-365.doi: 10.11872/j.issn.1005-2518.2024.02.0014

• 采选技术与矿山管理 • 上一篇    下一篇

基于混合整数规划的风流两步骤调控优化方法

钟德云1,2(),文历学2(),王李管1,2   

  1. 1.长沙迪迈科技股份有限公司,湖南 长沙 410221
    2.中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2024-01-02 修回日期:2024-04-01 出版日期:2024-04-30 发布日期:2024-05-21
  • 通讯作者: 文历学 E-mail:deyizhiyun@163.com;225512108@csu.edu.cn
  • 作者简介:钟德云(1990-),男,福建长汀人,博士后,从事智能通风和地质建模研究工作。deyizhiyun@163.com
  • 基金资助:
    国家重点研发计划项目“超大型深井矿山高效绿色开采技术与智能装备”(2022YFC2904105)

Two-step Optimization Method for Airflow Control Based on Mixed Integer Programming

Deyun ZHONG1,2(),Lixue WEN2(),Liguan WANG1,2   

  1. 1.Changsha Dimine Co. , Ltd. , Changsha 410221, Hunan, China
    2.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
  • Received:2024-01-02 Revised:2024-04-01 Online:2024-04-30 Published:2024-05-21
  • Contact: Lixue WEN E-mail:deyizhiyun@163.com;225512108@csu.edu.cn

摘要:

实现按需通风是当前矿井智能通风系统推进建设过程的核心技术问题。为解决矿井通风网络优化调控非线性模型求解困难的问题,在改进两步骤通风优化方法的基础上,提出了一种基于混合整数规划的风流两步骤调控优化数学模型。该模型以通风能耗最小、调节点个数最少和调节点位置最佳等为目标,是一种多目标线性规划模型,其求解结果更加符合矿山实际调控需求。改进的两步骤通风优化方法具有以下优点:通过引入混合整数规划方法,该模型可以对调节方案的调节点个数和调节方式进行约束;通过引入分支调节级数,该模型可以根据井下实际情况对调节方案的位置进行约束,从而提高了通风网络优化调节方案的灵活性;此外,通过多次求解风量分配对应调控方案的方式,该模型既可以得到近似满足风量未知调控模型的求解方案,也可以避免非线性模型求解不收敛的问题。通过构建矿井通风优化调控计算实例模型,在通风网络模型进行分风计算的基础上验证了通风网络模型调控的可靠性。

关键词: 矿井通风, 通风调节, 通风优化, 风流调节, 两步法, 混合整数规划

Abstract:

Intelligent mining is an important direction for the future development of the mining industry.The construction of mine intelligent ventilation system is a key part of promoting the digital and intelligent development of mines.Under the current background of energy conservation and emission reduction,the ways of digital and information technology to achieve low-carbon mining,efficient utilization and intelligent control of non-ferrous metal resources,is the important technical guarantee to achieve the strategy of “carbon peaking and carbon neutrality”.The key to realize the high-efficiency utilization of non-ferrous metal resources is to adopt the intelligent ventilation technology to reduce the energy consumption.In the current process of pro-moting the construction of intelligent mine ventilation system,a common hot and difficult issue is to realize the optimal regulation of airflow of mine ventilation system under the condition of ventilation on-demand.The ventilation optimization regulation of intelligent ventilation system requires that on the premise of satisfying the dynamic ventilation on-demand in different periods,the ventilation optimization theory based on fluid network was adopted to obtain a ventilation optimization regulation scheme that meets the requirements of safety,technology and economic.Then the airflow distribution and air pressure distribution of the ventilation network were adjusted to ensure the safe,reliable,stable and economic operation of the mine ventilation system.In order to solve the problem of difficulty in solving the optimization and regulation model of nonlinear mine ventilation network,based on the basic mathematical model of ventilation network airflow regulation,the method of airflow control and optimization of ventilation network was analyzed,and the objectives and constraints of the airflow regulation optimization model based on multi-objective mixed integer programming were analyzed.A two-step airflow control optimization mathematical model based on the mixed integer programming method by improving the two-step ventilation optimization method was proposed.The mathematical model is a multi-objective programming linear model with the goals of minimum ventilation energy consumption,minimum number of regulation equipment and optimal position of regulation equipment,so that the solution result of the mathematical model is more in line with the actual regulation needs.The mathematical model can constraint the number and regulating ways of regulation position by introducing the mixed integer programming method,and constraint the position of regulation schemes according to the actual situation of the mine by introducing the regulation level of branches,which improve the flexibility of ventilation regulation optimization schemes.In addition,by solving the corresponding regulation schemes of airflow distribution multiple times,the mathematical model can obtain a solution scheme that approximately satisfies the solution result of regulation mathematical model with unknown airflow,while avoiding the problem of non-convergence in solving nonlinear models.We construct a calculation example for the mine ventilation optimization regulation problem,and verify the reliability of ventilation regulation mathematical model based on the calculation of airflow distribution.

Key words: mine ventilation, ventilation regulation, ventilation optimization, airflow regulation, two-step way, method integer programming

中图分类号: 

  • TD72

图1

通风网络风量调控优化实例"

图2

通风网络风量分配结果"

表1

通风网络风量分配结果"

编号位置类型长度/m

阻力系数

/(N·s2·m-8

风阻

/(N·s2·m-8

解算风量

/(m3·s-1

解算风压/Pa

风速

/(m·s-1

需风量

/(m3·s-1

调节风压/Pa
20进风一般28.060.10000.0281130.00474.2011.50--
21出风定流25.710.10000.0257130.00-568.5211.50130-1 003.15
1内部一般27.370.11000.030127.8623.382.79--
2内部一般27.370.13000.035525.8123.702.58--
3内部一般11.750.10000.01171.820.040.18--
4内部一般16.000.11000.017626.0411.942.60--
5内部一般16.000.10000.016026.8711.560.16--
6内部一般11.750.11000.01291.060.010.11--
7内部一般7.970.10000.007910.990.961.10--
8内部一般6.510.10000.006516.871.851.69--
9内部一般7.970.10000.007911.301.021.13--
10内部一般6.510.10000.006514.501.371.45--
11内部一般34.330.08000.027424.0315.872.40--
12内部一般36.150.11000.039725.1025.062.51--
13内部一般26.170.13000.034039.6053.383.96--
14内部一般34.340.07000.024025.9616.202.60--
15内部一般36.150.12000.043424.1325.272.41--
16内部一般20.030.11000.022049.3753.734.94--
17内部一般41.250.12000.049527.0736.292.71--
18内部一般26.170.12000.031441.0152.844.10--
19内部定流22.780.13000.029680.004.2958.0080-185.28

表2

通风网络风量调节优化方案"

调节方案调节设置编号调节风压/Pa调节方式
方案一分支#19不可调4-185.28增能
17-185.28增能
5-185.28增能
21-1 003.15增能
方案二

分支#19不可调;

提高调节点个数目标权重

11185.28增阻
14185.28增阻
20-1 188.43增能
方案三

分支#19不可调;

提高最少调节点个数目标权重

11185.28增阻
14185.28增阻
21-1 188.43增能
方案四

分支#19不可调;

提高最佳调节方式目标权重

11185.28增阻
14185.28增阻
21-1 188.43增能

图3

按需分风分支#21增能调节备选风机列表"

图4

备选风机K40-8-No25运行工况模拟"

图5

通风网络风量调控优化实例"

Acuña E, Lowndes I S,2014.A review of primary mine ventilation system optimization[J].Interfaces,44(2):163-175.
Chen K, Si J, Zhou F,et al,2015.Optimization of air quantity regulation in mine ventilation networks using the improved differential evolution algorithm and critical path method[J].International Journal of Mining Science and Technology,25(1):79-84.
Gao K, Deng L J, Liu J,et al,2018.Study on mine ventilation resistance coefficient inversion based on genetic algorithm[J].Archives of Mining Sciences,63(4):813-826.
Gao W,2004.Optimization of mine ventilation system based on ant colony algorithm[C]//Progress in Safety Science and Te-chnology:vol.4 pt.A.Wuhan:Wuhan Polytechnic University.
Gao W,2011.Optimization of mine ventilation system based on bionics algorithm[J].Procedia Engineering,26:1614-1619.
Gu P, Xiu C B, Cheng Y,et al,2014.Adaptive ant colony optimization algorithm[C]//2014 International Conference on Mechatronics and Control (ICMC):July 3-5,2014,Jinzhou,China. doi:10.1109/ICMC.2014.7231514 .
doi: 10.1109/ICMC.2014.7231514
Hu Y N, Koroleva O I, Krstic M,2003.Nonlinear control of mine ventilation networks[J].Systems and Control Letters,49(4):239-254.
Kozyrev S A, Osintseva A V,2012.Optimizing arrangement of air distribution controllers in mine ventilation system[J].Journal of Mining Science,48(5):896-903.
Liang S H, He J, Zheng H,et al,2018.Research on the HPACA algorithm to solve alternative covering location model for methane sensors[C]//6Th International Conference on Information Technology and Quantitative Management:464-472.
Liu Jian,2020.Overview on key scientific and technical issues of mine intelligent ventilation[J].Safety in Coal Mines,51(10):108-111,117.
Lowndes I S, Fogarty T, Yang Z Y,2005.The application of genetic algorithms to optimise the performance of a mine ventilation network:The influence of coding method and population size[J].Soft Computing,9(7):493-506.
Lu Xinming, Yin Hong,2020.The intelligent theory and technology of mine ventilation[J].Journal of China Coal Society,45(6):2236-2247.
Sotoudeh F, Maleki S, Sereshki F,2018.Application of VENTSIM 3D and mathematical programming to optimize underground mine ventilation network:A case study[J].Journal of Mining and Environment,9(3):741-752.
Stepanenko S, Engels B,2007.Gradient tabu search[J].Journal of Computational Chemistry,28(2):601-611.
Ueng T H, Wang Y J,1984.Analysis of mine ventilation networks using nonlinear programming techniques[J].International Journal of Mining Engineering,2(3):245-252.
Wang Kai, Pei Xiaodong, Yang Tao,et al,2023.Study on intelligent ventilation linkage control theory and supply-demand matching experiment in mines[J].Chinese Journal of Engineering,45(7):1214-1224.
Wang Y J,1984.A non-linear programming formulation for mine ventilation networks with natural splitting[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,21(1):43-45.
Wu X S, Topuz E,1998.Analysis of mine ventilation systems using operations research methods[J].International Transactions in Operational Research,5(4):245-254.
Wu Xinzhong, Han Zhenghua, Wei Lianjiang,et al,2021.Intelligent on-demand adjustment algorithm and key technology of mine air flow[J].Journal of China University of Mining and Technology,50(4):725-734.
Zhang Jinggang, Wang Qingyan, He Xin,2023.Research status and system design of intelligent mine ventilation[J].Mining Safety and Environmental Protection,50(5):37-42.
Zhou Fubao, Wei Lianjiang, Xia Tongqiang,et al,2020.Principle,key technology and preliminary realization of mine intelligent ventilation[J].Journal of China Coal Society,45(6):2225-2235.
Zhou Fubao, Xin Haihui, Wei Lianjiang,et al,2023.Research progress of mine intelligent ventilation theory and technology[J].Coal Science and Technology,51(1):313-328.
刘剑,2020.矿井智能通风关键科学技术问题综述[J].煤矿安全,51(10):108-111,117.
卢新明,尹红,2020.矿井通风智能化理论与技术[J].煤炭学报,45(6):2236-2247.
王凯,裴晓东,杨涛,等,2023.矿井智能通风联动调控理论与供需匹配实验研究[J].工程科学学报,45(7):1214-1224.
吴新忠,韩正化,魏连江,等,2021.矿井风流智能按需调控算法与关键技术[J].中国矿业大学学报,50(4):725-734.
张景钢,王清焱,何鑫,2023.矿井智能通风现状与智能控制系统构建[J].矿业安全与环保,50(5):37-42.
周福宝,魏连江,夏同强,等,2020.矿井智能通风原理、关键技术及其初步实现[J].煤炭学报,45(6):2225-2235.
周福宝,辛海会,魏连江,等,2023.矿井智能通风理论与技术研究进展[J].煤炭科学技术,51(1):313-328.
[1] 钟德云, 刘雨龙, 王李管. 矿山多级机站通风系统风机优化选型方法[J]. 黄金科学技术, 2024, 32(4): 666-674.
[2] 田龙,周智勇,陈建宏. 配备辅助通风的高温矿井采掘区温度分布数值模拟[J]. 黄金科学技术, 2020, 28(1): 61-69.
[3] 涂鸿渐,王李管,陈鑫,任助理,张炬. 基于混合整数规划法的露天矿配矿品位控制[J]. 黄金科学技术, 2019, 27(3): 458-465.
[4] 王从陆,李童. 基于Ventsim的深井线性热源对有效通风量的影响分析[J]. 黄金科学技术, 2019, 27(2): 271-277.
[5] 任助理,王李管. 基于金属价格不确定性的地下矿生产计划风险分析[J]. 黄金科学技术, 2017, 25(6): 52-60.
[6] 林伟,胡汉华* . 人机学视阈下的矿井通风系统设计与思考[J]. 黄金科学技术, 2017, 25(3): 121-127.
[7] 李刚,吴超. 抱伦金矿通风系统优化研究[J]. 黄金科学技术, 2016, 24(1): 92-96.
[8] 陈友东. 河台金矿高村矿区通风系统技术改造与研究[J]. J4, 2003, 11(1): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!