img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (3): 387-399.doi: 10.11872/j.issn.1005-2518.2024.03.046

• 矿产勘查与资源评价 •    下一篇

北祁连榆树沟山金矿区花岗闪长斑岩脉锆石U-Pb年龄、地球化学特征及其地质意义

杨彦1(),黄增保2,3(),郭小刚4,许延龙2,颜华2   

  1. 1.甘肃省矿产资源储量评审中心,甘肃 兰州 730000
    2.甘肃省地质调查院,甘肃 兰州 730000
    3.甘肃省地学大数据工程研究中心,甘肃 兰州 730000
    4.甘肃省有色金属地质勘查局白银矿产勘查院,甘肃 白银 730900
  • 收稿日期:2024-02-05 修回日期:2024-03-13 出版日期:2024-06-30 发布日期:2024-07-05
  • 通讯作者: 黄增保 E-mail:lzwy1018@126.com;gsddyhzb@126.com
  • 作者简介:杨彦(1974-),男,甘肃金昌人,高级工程师,从事矿产资源储量评审工作。lzwy1018@126.com
  • 基金资助:
    甘肃省自然基金项目“甘肃北山罗雅楚山地区沉积—变质型铁矿成矿规律与隐伏矿床预测”(22JR5RA820);甘肃省重点人才项目“敦煌地块东南缘构造—岩浆作用与金矿关系研究预测”(甘资人函[2022]49号)

Zircon U-Pb Age and Geochemical Characteristics of Granodiorite Porphyry Veins in Yushugoushan Gold Deposit,Northern Qilian Mountain,and Its Geological Significance

Yan YANG1(),Zengbao HUANG2,3(),Xiaogang GUO4,Yanlong XU2,Hua YAN2   

  1. 1.Gansu Provincial Mineral Resource and Reserve Evaluation Center, Lanzhou 730000, Gansu, China
    2.Geological Survey of Gansu Province, Lanzhou 730000, Gansu, China
    3.Geoscience Big Data Engineering Research Center of Gansu Province, Lanzhou 730000, Gansu, China
    4.Baiyin Mineral Exploration Institute of Gansu Nonferrous Metal Geological Exploration Bureau, Baiyin 730900, Gansu, China
  • Received:2024-02-05 Revised:2024-03-13 Online:2024-06-30 Published:2024-07-05
  • Contact: Zengbao HUANG E-mail:lzwy1018@126.com;gsddyhzb@126.com

摘要:

榆树沟山金矿床位于北祁连造山带西段,是祁连成矿带内新发现的一个中型金矿床,矿床类型为岩浆期后热液型金矿,该金矿形成与花岗闪长斑岩脉热液蚀变关系密切。为了查明花岗闪长斑岩脉的成岩时代、源区性质和构造背景,开展了锆石U-Pb定年、Hf同位素和全岩地球化学研究工作。结果表明:花岗闪长斑岩脉的岩性为蚀变花岗闪长斑岩,侵入于阴沟群地层内构造破碎带中。该岩脉LA-ICP-MS锆石U-Pb年龄为(423.5±3.5)~(422.8±3.4)Ma,指示岩浆侵位时代为晚志留世。岩石具有低TFe2O3(1.57%~2.43%)和MgO(0.91%~1.43%)含量,高Al2O3(15.66%~17.20%)含量和A/CNK值(1.10~1.29),属于钙碱性准铝质系列岩石。岩石富集Rb、Ba、Sr和轻稀土元素,亏损Nb、Ta和Y、Yb等元素,具有高Sr含量(289×10-6~486×10-6)和Sr/Y比值(65.1~95.3),低Y(4.11×10-6~5.48×10-6)和Yb(0.38×10-6~0.49×10-6),与埃达克岩的地球化学特征相似。该岩体结晶锆石εHft)为正值(+7.50~+11.0),二阶段模式年龄(TDM2)为0.86~0.67 Ga,推测岩石起源于新元古代新生地壳物质的部分熔融。结合区域地质背景,初步认为榆树沟山矿区花岗闪长斑岩脉形成于祁连山造山带碰撞后伸展环境,晚志留世强烈陆内伸展作用诱发造山带新元古代新生洋壳发生部分熔融,形成埃达克质岩浆,沿断裂带形成了花岗闪长斑岩。

关键词: 北祁连造山带, 晚志留世, 榆树沟山金矿, 埃达克岩, 花岗闪长斑岩, 锆石U-Pb年龄

Abstract:

Yushugoushan gold deposit is located in the western part of the north Qilian orogenic belt,it is a newly discovered medium-sized gold deposit.It belongs to post-magmatic hydrothermal gold deposit.The formation of the gold deposit is closely related to the hydrothermal alteration of the granodiorite porphyry veins.In order to confirm the intrusive age,lithogenesis and magma source characteristic of the granodiorite porphyry veins,the study of LA-ICP-MS zircon U-Pb isotopic dating,Hf isotope and whole-rock geochemical were carried out.The results show that the lithology of granodiorite porphyry veins is altered granodiorite porphyry,which intrudes into the structural fracture zone in the Yingou Group strata.The LA-ICP-MS zircon U-Pb age of granodiorite porphyrys obtained is (423.5±3.5)~(422.8±3.4)Ma,indicating that the magma emplacement age is Late Silurian.The major elements of granodiorite porphyrys are characterized by low TFe2O3(1.57%~2.43%),MgO(0.91%~1.43%)contents and A/CNK values(1.10~1.29),suggesting the granodiorite porphyrys belongs to the calcalkaline and peraluminous series rock.They are relatively enriched such as Rb,Ba,Sr and light rare earth elements,and depleted Nb,Ta and Y,Yb,it is characterized by high Sr content(289×10-6~486×10-6) and Sr/Y ratio (65.1~95.3),low content of Y (4.11×10-6~5.48×10-6) and Yb(0.38×10-6~0.49×10-6),this likely indicates adakitic granite.In-situ Hf isotope analysis of zircon shows that the εHft) values range from 7.50 to 11.0,and Hf two-stage model age is 0.86 Ga to 0.67 Ga,suggesting that the major rock is the product of partial melting of juvenile crust derived from the Neoproterozoic depleted mantle.Combined with the regional geological background,it is preliminarily considered that the Yushugoushan granodiorite porphyry veins is formed the post collision extension stageintracontinental extension,during the Late Silurian,strong intracontinental extension induced the partial melting of the Neoproterozoic juvenile crust in the orogenic belt,and formed adakitic magma.In the process of its continuous upwelling and evolution,the Yushugoushan granodiorite porphyry dyke were formed.

Key words: North Qilian orogenic belt, Late Silurian, Yushugoushan gold deposit, adakite, granodiorite porphyry, zircon U-Pb age

中图分类号: 

  • P618.51

图1

祁连西段大地构造位置(a)和榆树沟山地区地质简图(b)(修改自王洋等,2020)1.第四系全新统;2.第四系更新统;3.新近系疏勒河组;4.白垩系下沟组;5.侏罗系赤金堡组;6.侏罗系龙凤山组;7.奥陶系阴沟群;8.寒武系黑刺沟组;9.志留纪英云闪长岩;10.志留纪超基性岩;11.花岗闪长斑岩脉/石英脉;12.金矿床;13.断层/角度不整合界线"

图2

榆树沟山金矿床地质简图(修改自王洋等,2020)1.第四系全新统;2.新近系疏勒河组;3.白垩系下沟组;4.奥陶系阴沟群变砂岩;5.奥陶系阴沟群绢云绿泥板岩;6.花岗闪长斑岩脉;7.金矿化蚀变带及编号;8.勘探线"

图3

榆树沟山金矿花岗闪长斑岩脉野外产出特征及显微照片(a)、(b)花岗闪长斑岩野外产出特征;(c)花岗闪长斑岩标本;(d)花岗闪长斑岩正交偏光显微照片;Ⅳ-金矿化蚀变带;γπ-花岗闪长斑岩;O1Y-奥陶系阴沟群;Pl-斜长石;Qtz-石英;Ms-白云母"

图4

榆树沟山金矿花岗闪长斑岩锆石U-Pb年龄谐和图"

表1

榆树沟山金矿花岗闪长斑岩锆石LA-ICP MS U-Pb测年结果"

分析点w(B)/(×10-6Th/U同位素比值同位素年龄/Ma
ThU207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
2YTW-1-0125.072.00.350.05770.00270.53810.02420.06850.0010520103437164276
2YTW-1-0242.51030.410.05550.00210.51130.01800.06720.000743288419124195
2YTW-1-0343.099.30.430.05400.00210.51320.02020.06890.000736989421144304
2YTW-1-0486.91600.540.05610.00190.52450.01770.06780.000645771428124234
2YTW-1-0761.41300.470.05390.00210.49900.01840.06730.000836985411124205
2YTW-1-0827.167.70.400.05660.00280.52290.02450.06760.0009476109427164225
2YTW-1-091272060.620.05700.00160.52680.01520.06690.000650060430104184
2YTW-1-1061.91200.520.05680.00210.53550.01990.06830.000848347435134265
2YTW-1-121422980.480.05710.00140.54950.01440.06940.00074945244594334
2YTW-1-132474030.610.05800.00120.56440.01190.07050.00065284445484393
2YTW-1-1443.11010.430.05630.00230.52060.02100.06740.000746591426144204
2YTW-1-1560.21170.520.05620.00200.52090.01810.06760.000846175426124215
2YTW-1-171061600.660.05660.00160.51790.01460.06650.000647663424104154
2YTW-1-2034.877.90.450.06000.00280.55790.02680.06730.0010611104450174206
2YTW-1-2258.81250.470.05670.00220.52830.01990.06770.000748085431134224
2YTW-1-2359.81280.470.05490.00200.51070.01830.06760.000740681419124214
2YTW-1-2438.01060.360.05410.00220.50070.01960.06720.000737691412134194
2YTW-1-051573600.440.16510.002410.19030.14960.44590.00312 509252 452142 37714
2YTW-1-061781880.950.07580.00171.93840.04150.18490.00151 100441 094141 0948
2YTW-1-111182730.430.06940.00141.28300.04290.13250.0032911368381980218
2YTW-1-181141330.850.07020.00161.55930.03750.16080.00151 00047954159618
2YTW-1-212333520.660.10050.00153.35410.07450.24050.00351 633281 494171 38918
2YTW-2-0130.975.30.410.05640.00290.53930.02820.06910.0008465115438194315
2YTW-2-0282.51330.620.05830.00220.55260.02310.06810.000854382447154245
2YTW-2-0336.296.90.370.04690.00970.54330.10960.06750.001355.7420441724218
2YTW-2-0431.967.40.470.05310.00300.50420.02630.06940.0009332131415184335
2YTW-2-0557.41280.450.05530.00210.52090.02020.06820.000843385426134255
2YTW-2-0624.967.00.370.05040.00260.47910.02380.06910.0009213114397164315
2YTW-2-0757.61300.440.05300.00180.48500.01690.06660.000832875401124165
2YTW-2-081332230.600.05670.00160.54290.01560.06950.000948061440104335
2YTW-2-0935.183.90.420.05550.00240.52660.02280.06890.000843592430154305
2YTW-2-1036.875.90.490.05880.00250.56110.02320.06980.000956193452154356
2YTW-2-1131.479.40.390.05640.00260.51300.02200.06670.0009478102420154165
2YTW-2-1299.81780.560.05760.00180.52480.01590.06600.000652267428114124
2YTW-2-1345.21000.450.05450.00210.51350.01930.06830.000839187421134265
2YTW-2-1459.51430.420.05930.00200.54600.01780.06680.000758976442124174
2YTW-2-1550.41200.420.05970.00240.54900.02090.06680.000759187444144174
2YTW-2-1634.887.60.400.05920.00210.55730.01990.06830.000957680450134266
2YTW-2-1764.71490.440.06030.00210.55380.01920.06640.000761344448134144
2YTW-2-1958.61190.490.05430.00220.50660.02090.06740.000738386416144204
2YTW-2-2064.61320.490.05780.00220.54480.02010.06830.000752483442134264

表2

榆树沟山金矿花岗闪长斑岩锆石Hf同位素分析结果"

分析点年龄/Ma176Lu/177Hf176Yb/177Hf176Hf/177Hf1σεHft1σTDM1/MaTDM2/MafLu/Hf
2YTW-1-014270.0008910.0330700.2828080.00001210.420.69628708-0.97
2YTW-1-024190.0008210.0291170.2828300.00001211.080.68595665-0.98
2YTW-1-034300.0009140.0335990.2827810.0000139.520.71666760-0.97
2YTW-1-044230.0009330.0338730.2828020.00001410.100.74637723-0.97
2YTW-1-074200.0006760.0236520.2827880.0000139.620.71653747-0.98
2YTW-1-084220.0006510.0235880.2827590.0000128.650.69692802-0.98
2YTW-1-094180.0010010.0368830.2828050.00001410.100.73633718-0.97
2YTW-1-104260.0009320.0332170.2827860.0000139.630.72659751-0.97
2YTW-1-124330.0012790.0422160.2822990.000014-7.590.731 3551 710-0.96
2YTW-1-134390.0014560.0550320.2824470.000015-2.240.761 1511 420-0.96
2YTW-1-144200.0007120.0249110.2827810.0000149.360.73663762-0.98
2YTW-1-154210.0008800.0296010.2827750.0000149.140.73674775-0.97
2YTW-1-174150.0009870.0337380.2827330.0000157.500.77735861-0.97
2YTW-1-204200.0008070.0265030.2827650.0000158.780.75687794-0.98
2YTW-1-224220.0009030.0308130.2827790.0000159.280.75669767-0.97
2YTW-1-234210.0009840.0338960.2827600.0000158.590.77697805-0.97
2YTW-1-244190.0008300.0306870.2828230.00001210.810.69605680-0.97
2YTW-1-052 3770.0005030.0190170.2815610.0000209.720.982 3352 317-0.98
2YTW-1-061 0940.0007320.0279000.2819930.000013-3.860.761 7582 027-0.98
2YTW-1-118020.0007040.0263210.2826470.00001312.940.74850869-0.98
2YTW-1-189610.0006950.0251920.2820540.000013-4.570.741 6721 961-0.98
2YTW-1-211 3890.0009040.0328230.2824750.00002119.550.961 096980-0.97

表3

榆树沟山金矿花岗闪长斑岩主量元素(%)和微量元素(×10-6)分析结果"

元素(化合物)名称样品编号及分析结果
2YY-12YY-22YY-32YY-42YY-52YY-62YY-72YY-82YY-9
SiO267.267.966.265.966.966.564.967.166.5
TiO20.210.200.200.200.220.210.200.210.20
Al2O316.115.716.716.117.216.516.516.415.9
TFe2O31.821.581.572.431.902.111.781.711.78
FeO0.800.700.540.540.300.500.600.820.82
MnO0.040.030.040.080.050.050.040.040.18
MgO1.411.081.121.240.911.061.391.431.37
CaO2.472.422.852.872.042.543.332.102.30
Na2O4.464.704.564.074.484.384.354.513.94
K2O2.171.731.612.392.112.221.702.052.92
P2O50.070.070.070.070.070.070.060.070.07
LOI4.204.364.894.634.013.915.893.984.53
total10099.799.810099.999.610099.599.7
Mg#373536282728383937
A/NCK1.141.121.161.111.291.161.101.221.15
σ1.821.661.641.821.821.851.671.792.00
Li31.537.733.419.636.823.08.3142.13.92
Be1.170.951.181.091.191.031.091.471.56
Sc3.583.283.453.683.963.853.453.383.39
V23.122.522.224.727.124.923.022.924.7
Cr24.622.731.632.937.335.632.124.123.1
Co4.263.814.155.934.695.064.864.683.26
Ni17.215.012.722.816.626.020.618.511.1
Cu8.106.502.348.4310.43.242.748.483.23
Zn23.319.512.721.916.919.820.629.912.1
Ga17.016.216.817.018.217.517.417.317.3
Rb82.565.354.193.777.187.057.179.1123
Hf2.432.262.272.332.442.462.192.582.56
Ta0.110.120.100.110.130.130.090.110.11
Tl0.440.390.310.530.430.450.320.470.65
Pb8.296.425.934.236.175.054.536.477.18
Th1.901.801.642.072.122.121.671.931.90
U1.610.850.691.001.141.100.841.080.85
Sr482374411329352365289486352
Y5.064.444.325.054.995.204.115.485.15
Zr81.073.771.972.480.376.168.881.382.8
Nb1.511.451.361.671.801.651.291.581.51
Sn0.560.500.490.530.580.530.410.600.53
Cs5.354.343.505.315.135.073.975.426.83
Ba295282585748305385233285502
Sr/Y95.384.095.265.170.570.270.488.768.2
La5.445.545.295.865.915.845.215.865.69
Ce11.711.711.212.312.512.311.112.812.2
Pr1.501.551.461.591.631.621.461.681.57
Nd6.126.335.876.326.466.496.036.786.44
Sm1.251.401.391.461.431.541.371.681.50
Eu0.400.370.420.520.440.470.400.410.47
Gd1.231.101.211.191.251.281.101.271.25
Tb0.180.170.160.180.180.180.150.180.17
Dy0.890.900.860.920.961.030.801.040.99
Ho0.180.150.160.180.180.170.150.180.16
Er0.450.450.380.480.480.470.390.470.47
Tm0.060.060.060.070.070.070.060.070.06
Yb0.400.380.390.450.470.450.380.490.43
Lu0.060.060.060.070.080.070.050.070.07
∑REE29.930.128.931.632.032.028.732.931.5
δEu0.910.830.890.970.900.900.870.790.91
(La/Yb)N9.069.899.248.708.558.699.258.038.86

图5

SiO2-K2O图解(a)(底图据Peccerillo et al.,1976)和A/NK-A/CNK图解(b)(底图据Maniar et al.,1989)"

图6

榆树沟山金矿花岗闪长斑岩稀土元素球粒陨石标准化配分模式(a)(底图据Boynton et al.,1984)和微量元素原始地幔标准化蛛网图(b)(底图据Sun et al.,1989)"

图7

榆树沟山金矿花岗闪长斑岩锆石年龄—εHf(t)图解(a)和锆石年龄—176Hf/177Hf图解(b)"

图8

榆树沟山矿区花岗闪长斑Sr/Y-Y图解(a)和(La/Yb)N-YbN图解(b)(底图据Defant et al.,1990)"

Boynton W V, Bowden P,1984. Geochemistry of the rare earth elements:Meteorite study[C]//Hendrson P.Rare Earth Element Geochemistry. Amsterdam:Elsevier: 63-114.
Defant M J, Drummond M S,1990. Derivution of some modern arc magmas by melting of young subduction lithosphere[J].Nature,347:662-665.
Fan Xinxiang, Kong Weiqiong, Yang Zhenxi, al et,2019.Geological characteristics,metallogenic age and genesis analysis of Niumaoquandong gold deposit in western Qilian Mountains[J].Geoscience,33(2):251-261.
Fan Xinxiang, Kong Weiqiong, Yang Zhenxi,et al,2020. U-Pb chronology,geochemical characteristics and petrogenesis of the Chelugou pluton in the western part of North Qilian orogenic belt[J].Geology in China,47(3):755-766.
Geng J Z, Qiu K F, Gou Z Y,2017.Tectonic regime switchover of Triassic Western Qinling Orogen:Constraints from LA-ICP-MS zircon U-Pb geochronology and Lu-Hf isotope of Dangchuan intrusive complex in Gansu,China[J].Geochemistry,77(4):637-651.
Griffin W L, Belousova E A, Shee S R,et al,2004.Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons[J].Precambrian Research,131:231-282
Guo Xiaofei, Wang Qinglong, Jing Yihong,et al,2022.Zircon U-Pb geochronology and Hf isotope characteristics of the Xihuashan granites in southern Jiangxi Province and their geological signifince[J].Geology and Exploration,58(3):585-596.
Hoskin P W O, Black L P,2000.Metamorphic zircon formation by solid-state recry-stallization of protolith igneous zircon[J].Journal of Metamorphic Geology,18:423- 439.
Hu Z C, Liu Y S, Gao S,et al,2012.Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry,27(9):1391-1399.
Huang Zengbao, Zheng Jianping, Li Baohua,et al,2018.U-Pb ages,Hf isotopic composition and geochemistry of alkaline complex from the Ganshaebo REE deposit in North Qilian Mountains,China[J].Acta Geology Sinica,92(12):315-320.
Liang Beishan, Song Xiaojun,2011.Enrichment characteristics of gold in Changma gold deposit,Yumen[J].Gansu Geology,20(1):57-61.
Li Shengdong, Li Damin, Yang Yongchun,2020.Ore-controlling structure and enrichment law of the Hanshan gold deposit in the western section of the north Qilian Mountains[J].Geology and Exploration,56(4):675-687.
Liu Y S, Hu Z C, Gao S,et al,2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,257(1/2):34-43.
Liu Yanliang, Gao Ya, Wei Jindong,2021.A discussion of prospecting direction for the Chelugoubei gold deposit in Gansu Province:The distinctiveness from contrast analysis of the geological conditions of‘Golden Triangle’ gold deposits in the eastern segment of Altyn fault shearing zones[J].Bulletin of Geological Science and Technology,40(5):198-209.
Liu Yongbiao, Yu Junpeng, Kong Weiqiong,et al,2020.A study of ore-forming epoch of Hanshan deposit in western North Qilian Mountain[J].Mineral Deposits,39(1):135-146.
Ludwig K R,2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel[M].Berkeley:Berkeley Geochronology Center.
Maniar P D, Piccoli P M,1989.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,101:635-643.
Mao Jingwen, Yang Jianmin, Zhang Zhaochong,et al,1998.Geology,geochemistry and genesis of the Hanshan shear zone type gold deposit in Gansu[J].Deposit Geology,(1):2-14.
Peccerillo A, Taylor S R,1976.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J].Contributions to Mineralogy Petrology,58:63-81.
Song S G, Niu Y L, Su L,et al,2013.Tectonics of the North Qilian orogen,NW China[J].Gondwana Research,23(4):1378-1401.
Song Zhongbao, Li Zhipei, Ren Youxiang,et al,2005.Geochronology and geological significance of the Chelugou dacite porphyry in North Qilian Mountains[J].Geotechnical Information,24(3):15-19.
Sun Jianan, Yin Gaoke, Dong Shuanqun,et al,2019.Genetic analysis of middle and low temperature hydrothermal gold deposits in the western section of North Qilian[J].China Resources Comprehensive Utilization,37(2):66-68.
Sun Jiandong, Li Haili, Lu Fan,et al,2022.Geochemistry,zircon U-Pb ages,and Hf isotopes of the Mengshan rock mass in western Jiangxi Province and their geologic implication[J].Geology and Exploration,58(1):96-106.
Sun S S, McDonough W F,1989.Chemical and isotope systematic of oceanic basalts:Implication for the mantle composition and process[C]//Saunder A D,Norry M J.Magmatism in the Ocean Basins.Geological Society,42(1):313-345.
Wang Yang, Liu Xiaobo,2020.Geological characteristics and prospecting of Yushugoushan gold deposit[J].Gansu Geology,29(3/4):67-73.
Yan Maoqiang,2024.Tectono-Magmatic Evolution and Gold Mineralization in Western North Qilian Orogen[D].Wuhan:China University of Geosciences.
Yang Jianguo, Ma Zhongping, Ren Youxiang,et al,2002.The geological features and genetic pattern of Te-Au deposit related to porphyry in North Qilian Mountains[J].North Western Geology,35(2):24-34 .
Yang Jianguo, Yang Linhai, Ren Youxiang,et al,2005.Isotopic geochronology of the ore-forming process in the Hanshan gold deposit of the North Qilian Mountains[J].Acta Geoscientica Sinica,26(4):315-320 .
Yang Xingji,1999.Geological characteristics of tectonoaltered rock-type gold deposit occurred in Hanshan shear zone in Anxi County[J].Acta Geologica Gansu,8 (1):42-48.
Ye Dejin, Zhang Zuoheng, Zhao Yanqing,2003.Ore-controlling factors and genesis of the Yingzuishan altered cataclastic rock type gold deposit in the western segment of North Qilian[J].Acta Geoscientica Sinica,24(4):311-318.
Zhang Xiang, Huang Zengbao, Liu Zirui,et al,2023.Geochronology,geochemical characteristics and genesis of Chelugou gold deposit ore-bearing porphyry in the North Qilian orogenic belt[J].Acta Petrologica Sinica,39(2):499-514.
樊新祥,孔维琼,杨镇熙,等,2019.北祁连西段牛毛泉东金矿地质特征、成矿时代及成因分析[J].现代地质,33(2):251-261.
樊新祥,孔维琼,杨镇熙,等,2020.北祁连造山带西段车路沟岩体 U-Pb 年代学、地球化学特征及岩石成因[J].中国地质,47(3):755-766.
郭小飞,王庆龙,荆一洪,等,2022.赣南西华山成矿花岗岩锆石U-Pb年代学和Hf同位素特征及其地质意义[J].地质与勘探,58(3):585-596.
黄增保,郑建平,李葆华,等,2018.北祁连干沙鄂博矿区碱性岩锆石U-Pb年龄、Hf同位素及岩石地球化学特征[J].地质学报,92(12):315-320.
李生栋,李大民,杨永春,2020. 北祁连西段寒山金矿控矿构造及富集规律[J].地质与勘探,56(4):675-687.
梁北山,宋小军,2011.玉门昌马金矿金的富集特征[J].甘肃地质,20(1):57-61.
刘彦良,高雅,魏金栋,等,2021.甘肃省车路沟北金矿找矿方向探讨:来自阿尔金断裂带东段“金三角”金矿控矿因素对比研究的启迪[J].地质科技通报,40(5):198-209.
刘永彪,余君鹏,孔维琼,等,2020.北祁连山西段寒山金矿床成矿时代探讨[J].矿床地质,39(1):135-146.
毛景文,杨建民,张招崇,等,1998.甘肃寒山剪切带型金矿床地质、地球化学和成因[J].矿床地质,(1):2-14.
宋忠宝,李智佩,任有祥,等,2005.北祁连山车路沟英安斑岩的年代学及地质意义[J].地质科技情报,24(3):15-19.
孙佳楠,尹高科,董栓群,等,2019.北祁连西段中低温热液型金矿成因分析[J].中国资源综合利用,37(2):66-68.
孙建东,李海立,陆凡,等,2022.赣西蒙山岩体地球化学特征、锆石U-Pb 年龄、Hf同位素特征及地质意义[J].地质与勘探,58(1):96-106.
王洋,刘晓波,2020.榆树沟山地区金矿地质特征及找矿标志[J].甘肃地质,29(3/4):67-73.
闫茂强,2024.北祁连西段构造岩浆演化与金成矿[D].武汉:中国地质大学.
杨建国,马中平,任有祥,等,2002.北祁连山与斑岩有关的碲金型金矿床地质特征和成因模型[J].西北地质,35(2):24-33.
杨建国,杨林海,任有祥,等,2005.北祁连山寒山金矿床成矿作用同位素地质年代学[J].地球学报,26(4):315-320.
杨兴吉,1999.安西县寒山剪切带构造蚀变岩型金矿床地质特征[J].甘肃地质,8(1):42-48.
叶得金,张作衡,赵彦庆,2003.北祁连西段鹰咀山蚀变碎裂岩型金矿床控矿因素和成因[J].地球学报,24(4):311-318.
张翔,黄增保,刘子锐,等,2023.北祁连车路沟斑岩型金矿床含矿岩体年代学、地球化学与岩石成因[J].岩石学报,39(2):499-514.
[1] 曹振梁,刘学龙,李守奎,刘思晗,李方兰,周博文. 滇西北燕山期含矿花岗岩与全球埃达克岩地球化学特征对比[J]. 黄金科学技术, 2023, 31(1): 15-25.
[2] 陈静,胡继春,逯永卓,卢世银,王树林,徐贝贝. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 465-472.
[3] 张永华,王建中,钱壮志,徐刚,姜超. 南秦岭白马山岩体Sr、Nd、Pb同位素组成及源区示踪[J]. 黄金科学技术, 2015, 23(5): 20-27.
[4] 王建中,钱壮志,姜超,徐刚,柳世强,唐文恒. 南秦岭白马山金矿区石英闪长岩地球化学特征及其构造意义[J]. 黄金科学技术, 2014, 22(5): 30-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[2] 冷寒松, 邓尧增, 胥华龙, 刘涛, 王卓. 有底柱分段崩落采矿法在焦家金矿的研究与应用[J]. J4, 2010, 18(4): 65 -67 .
[3] 刘东海, 刘新会. 西秦岭寨上特大型金矿床黄铁矿特征及其含金性研究[J]. J4, 2010, 18(6): 8 -12 .
[4] 刘新会,刘家军,陈彩华. 西秦岭寨上特大型金矿床硫盐矿物特征及其成因意义[J]. J4, 2010, 18(4): 6 -11 .
[5] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[6] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[7] 吴富强, 梁胜跃. 云南东川地区播卡金矿成矿规律研究[J]. J4, 2011, 19(1): 1 -5 .
[8] 黄建军, 李天恩, 范红科. 大兴安岭地区金(银)多金属矿成矿地质背景及找矿潜力的探讨[J]. J4, 2010, 18(6): 13 -17 .
[9] 路英川, 李伟, 范俊杰, 刘纲, 朝银银, 张岱. 内蒙古哈达门沟金矿山前钾化带再认识[J]. J4, 2011, 19(1): 42 -44 .
[10] 吴小霞, 邹华, 焦明录, 宪曾刚. 青海什多龙银铅锌矿床银的赋存状态研究[J]. J4, 2007, 15(1): 19 -22 .