img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (3): 400-415.doi: 10.11872/j.issn.1005-2518.2024.03.030

• 矿产勘查与资源评价 • 上一篇    下一篇

西藏德新铅多金属矿床地球物理与地球化学综合找矿研究

李炎1(),王建国1,2(),魏生云1,李国璋1,胡建1,王志男1   

  1. 1.青海大学地质工程学院,青海 西宁 810016
    2.青海省青藏高原北缘新生代资源环境重点实验室,青海 西宁 810016
  • 收稿日期:2024-01-22 修回日期:2024-04-22 出版日期:2024-06-30 发布日期:2024-07-05
  • 通讯作者: 王建国 E-mail:liyan20222@163.com;lywjg467047@126.com
  • 作者简介:李炎(2000-),女,河南平顶山人,硕士研究生,从事成矿预测、资源勘查及地球化学等方面的研究工作。liyan20222@163.com
  • 基金资助:
    国家自然科学基金项目“基于微观层面分析的岩矿电阻率耦合机理及其模型:以查藏错铜铅锌矿床为例”(42164007)

Study on Geophysical and Geochemical Comprehensive Prospecting of Dexin Lead Polymetallic Deposit in Tibet

Yan LI1(),Jianguo WANG1,2(),Shengyun WEI1,Guozhang LI1,Jian HU1,Zhinan WANG1   

  1. 1.School of Geological Engineering, Qinghai University, Xining 810016, Qinghai, China
    2.Key Laboratory of Cenozoic Resources and Environment in Northern Margin of the Tibetan Plateau, Xining 810016, Qinghai, China
  • Received:2024-01-22 Revised:2024-04-22 Online:2024-06-30 Published:2024-07-05
  • Contact: Jianguo WANG E-mail:liyan20222@163.com;lywjg467047@126.com

摘要:

德新铅多金属矿床是冈底斯多金属成矿带西段受构造—岩浆控制的中—低温热液型多金属矿床之一。通过对岩(矿)石电阻率、极化率及主微量元素等物性参数和地球化学特征进行分析,综合解释矿区矿致异常,并利用多元统计分析方法对成矿元素进行研究。结果表明:德新铅多金属矿床矿体的极化率及电阻率与围岩存在明显差异,可划分为低阻高极化和高阻高极化2种类型,对应8处激电异常,推测JD3-5和JD4 低阻高极化异常为矿致异常,具有深部找矿潜力,是区内找矿勘查的重点区域之一;Pb、Zn、Cu、Mo、Ni和In等元素相关性显著,是德新铅多金属矿床的主要成矿元素;成矿过程前期主要受中—高温岩浆热液矿化类型Zn-Mo-Pb和Cu-Ni-In的影响,后期主要受含有Sc-Cr-Li和Hf-Be元素的流体及围岩的影响,其中Pb元素受Ni、Mo和In影响强烈,Zn元素受Mo的影响强烈。上述认识能够为找矿预测提供有用的宏观及微观信息,对该区域综合找矿具有重要的指导意义。

关键词: 电阻率, 极化率, 激电中梯测量, 因子分析, 多元线性回归分析法, 德新铅多金属矿床, 西藏

Abstract:

Dexin lead polymetallic deposit is one of the midium-low temperature hydrothermal polymetallic deposits controlled by structure-magmatic in the western section of the Gangdese polymetallic metallogenic belt.In order to delineate the IP intermediate gradient anomaly in this area,find out the ore-forming elements combination and narrow the prospecting target area,the physical parameters of resistivity,polarizability,main and trace elements and geochemical characteristics of the rock(ore) in Dexin lead polymetallic deposit were analyzed,and the ore-forming anomalies in the mining area were comprehensively explained,and multivariate statistical analysis of ore-forming elements was carrid out.It is found that there are obvious differences in the polarization and resistivity between the orebody and surrounding rock in the Dexin lead polymetallic mining area.According to the apparent resistivity background,it can be divided into two types,namely low resistance-high polarization and high resistance-high polarization.It is speculated that the low resistance-high polarization anomalies(JD3-5,JD4)are ore-induced anomalies with deep prospecting potential,which is one of the key areas for prospecting and exploration in the area.According to correlation,R-type clustering and principal component analysis,Pb,Zn,Cu,Mo,Ni,In and other elements have significant correlation,which are the main ore-forming elements in the Dexin mining area.The Dexin lead polymetallic deposit may have experienced multiple magmatic-hydrothermal geological processes at different stages of mineralization.The early stage was influenced by Zn-Mo-Pb and Cu-Ni-In mineralization of medium-high temperature magmatic-hydrothermal mineralization type,and the later stage was affected by fluid and surrounding rock including Sc-Cr-Li and Hf-Be elements.Through the multiple stepwise linear regression analysis of the main ore-forming elements Pb,Zn,Cu and Ni,it is concluded that Pb is strongly influenced by Ni,Mo and In,Zn is strongly influenced by Mo,Cu is significantly influenced by In and Pb,and the influence degree of Ni from large to small is In,Be,Sc and Zn.According to the empirical equation,it is found that the fitting effect is good,which can provide certain microscopic information for Pb polymetallic mineralization.This understanding can provide useful macro and micro information for prospecting prediction,and has important guiding significance for comprehensive prospecting in this area.

Key words: resistivity, polarizability, induced polarization(IP) intermediate gradient measurement, factors analysis, multiple linear regression analysis method, Dexin lead polymetallic deposit, Tibet

中图分类号: 

  • P618.42

图1

研究区大地构造背景(a)(修改自李文坛等,2022)和德新铅多金属矿床位置(b)(修改自王立强等,2017)1.地质界线;2.缝合带;3.断裂带;4.北冈底斯;5.中冈底斯;6.冈底斯弧背断隆带;7.南冈底斯;8.隐爆角砾岩型多金属矿床;9.热液脉型多金属矿床;10.斑岩型多金属矿床;11.矽卡岩型多金属矿床;12.德新矿床;13.地名"

图2

西藏则学地区地质简图(a)和德新铅多金属矿区地质及矿体分布图(b)(修改自柯贤忠等,2019)1.第四系冲洪积物;2.上石炭统拉嘎组下段粉砂质板岩;3.上石炭统拉嘎组上段含砾砂板岩;4.白垩世石英闪长岩;5.钾长花岗岩;6.始新统年波组英安岩;7.始新统年波组安山岩;8.始新统年波组凝灰岩;9.闪长玢岩;10.石英斑岩脉;11.始新统年波组火山角砾岩;12.变长石石英砂岩;13.石英脉;14.细晶岩脉;15.铜矿体;16.铅矿体;17.断层;18.地层等高线;19.已施工钻孔及平硐位置;20.采样点位置"

图3

德新铅多金属矿区矿石显微特征Py-黄铁矿;Gn-方铅矿;Sp-闪锌矿;Ccp-黄铜矿"

表1

德新铅多金属矿区岩(矿)石标本电性参数测试结果"

样品名称样品数量/个极化率/%电阻率/(Ω·m)
变化范围平均值变化范围平均值
褐铁矿化花岗闪长岩32.7~3.43.11 242~3 1612 363
黄铁矿化、褐铁矿化砂质板岩94.0~9.86.61 536~19 32710 880
花岗闪长岩150.6~3.92.0937~14 4144 356
黄铁矿化英安岩52.9~6.54.8604~3 6852 601
火山角砾岩80.8~2.61.91 298~8 9384 344
孔雀石化板岩20.9~1.21.11 327~3 4372 382
孔雀石化石英蚀变岩23.9~4.04.01 873~3 4932 683
凝灰岩70.2~0.90.5485~3 5072 048
铅锌矿石104.2~39.821.4219~3 038599
砂质板岩91.0~4.72.91 237~18 1885 549
闪长玢岩72.2~5.13.41 045~6 8223 325
石英斑岩21.1~2.01.51 165~1 6971 431
石英脉70.3~0.90.63 643~14 61910 088
蚀变砂岩71.0~4.81.73 320~7 5064 992
蚀变角砾岩51.0~5.33.61 061~3 8371 958
英安岩70.4~3.01.1803~7 2803 467

表2

德新铅多金属矿区岩(矿)石主量和微量元素分析结果"

样品编号岩性主量元素
Na2OMgOAl2O3SiO2P2O5K2OCaOTiO2MnOFe2O3FeO
DX-Qp01石英斑岩0.180.1412.1076.220.018.400.680.050.060.450.30
DX-Qp02石英斑岩0.190.1311.6775.900.018.171.020.050.120.900.07
DX-Qp03石英斑岩0.160.1411.8776.410.027.960.830.060.120.650.20
DX-Qp04石英斑岩0.180.0911.5776.460.018.240.880.050.090.480.37
DX-Qp05石英斑岩0.180.1212.0975.490.018.530.960.050.100.580.27
DX-b01闪长玢岩3.093.9116.7454.820.201.686.371.080.213.155.42
DX-b02闪长玢岩3.103.9916.8854.710.201.896.031.080.463.305.25
DX-b03闪长玢岩3.203.7416.6854.390.202.315.601.040.222.685.25
样品编号岩性微量元素
PbLiBeInCuZnHfMoScCrNi
DX-Qp01石英斑岩286.49.692.080.0424.67359.044.421.443.506.461.36
DX-Qp02石英斑岩253.910.632.130.0380.73448.034.601.693.416.271.37
DX-Qp03石英斑岩263.513.452.110.0324.78518.024.232.323.515.101.30
DX-Qp04石英斑岩194.810.332.620.0382.89308.644.581.923.246.961.59
DX-Qp05石英斑岩148.910.702.290.0436.81246.344.341.933.756.401.46
DX-Qp06石英斑岩521.019.701.20048.21673.552.091.481.530.74
DX-Qp07石英斑岩298.06.251.36029.897.93.411.561.461.060.60
DX-s01石英闪长岩40.024.902.57016.94374.720.639.3429.5018.90
DX-s02石英闪长岩74.622.502.52030.61715.401.6510.0848.1028.90
DX-b01闪长玢岩18.4728.141.270.0721.39117.64.490.5523.9521.813.58
DX-b02闪长玢岩43.3832.061.450.0825124.94.580.5923.3616.903.26
DX-b03闪长玢岩26.8637.411.420.0719.89122.024.580.5122.4018.903.03
DX-Gn01方铅矿00.230.290.324 7281380.020.290.141.830.43
DX-Gn02方铅矿00.390.281.274601380.031.900.092.902.42
DX-Gn03方铅矿2 5432.990.862.793781 3210.0210.52.111.1411.50
DX-Sph01闪锌矿9100.320.045.992 47400.020.220.042.900.13
DX-Sph02闪锌矿1 1020.220.028.262 86000.020.100.041.890.25
DX-Py01黄铁矿5 0000.060.111512 5861 9760.0114.60.030147.00
DX-Py02黄铁矿4530.080.033.5028554.30.010.150.051.3325.90
DX-Py03黄铁矿7100.190.053.9996.477.70.010.270.161.3132.00

表3

德新铅多金属矿区铅、铜及主量元素相关系数矩阵"

PbCuNa2OMgOAl2O3SiO2P2O5K2OCaOTiO2MnOFe2O3FeO
Pb1.0000.426-0.923**-0.919**-0.919**0.928**-0.918**0.911**-0.929**-0.922**-0.709*-0.900**-0.928**
Cu1.000-0.540-0.545-0.5920.544-0.5560.535-0.52-0.544-0.37-0.494-0.546
Na2O1.0000.998**0.997**-1.000**0.999**-0.996**0.995**0.999**0.792*0.982**0.999**
MgO1.0000.998**-0.999**0.999**-0.998**0.998**1.000**0.811*0.989**0.999**
Al2O31.000-0.998**0.997**-0.993**0.993**0.997**0.802*0.982**0.997**
SiO21.000-0.999**0.995**-0.996**-0.999**-0.796*-0.984**-0.998**
P2O51.000-0.998**0.995**0.999**0.799*0.985**0.998**
K2O1.000-0.998**-0.998**-0.804*-0.991**-0.997**
CaO1.0000.998**0.799*0.992**0.996**
TiO21.0000.804*0.988**0.999**
MnO1.0000.850**0.787*
Fe2O31.0000.982**
FeO1.000

表4

德新铅多金属矿区铅、铜及微量元素相关系数矩阵"

PbCuZnNiMoScLiInHfCrBe
Pb1.0000.632**0.935**0.836**0.917**-0.379-0.499*0.889**-0.636**-0.388-0.519*
Cu1.0000.3010.2360.145-0.368-0.507*0.341-0.631**-0.329-0.593**
Zn1.0000.756**0.968**-0.262-0.3100.810**-0.336-0.233-0.172
Ni1.0000.752**-0.166-0.2260.969**-0.306-0.042-0.282
Mo1.000-0.231-0.2670.788**-0.291-0.232-0.157
Sc1.0000.899**-0.1960.595**0.631**0.346
Li1.000-0.2460.795**0.700**0.585**
In1.000-0.306-0.283-0.312
Hf1.0000.621**0.918**
Cr1.0000.563**
Be1.000

表5

德新铅多金属矿区激电中梯异常特征及解释"

异常名称形状视极化率

视电阻率

/(Ω·m)

激电中梯局部异常的解释
JD1异常

NW向

条带状

平均值为3.2%,极值为3.6%3 000~4 400该异常实为Ⅰ-1号脉状铅锌矿体的反映,Ⅰ-1号矿体赋存于细粒黑云石英闪长岩体内蚀变英安岩捕虏体中,含矿岩石为灰绿色蚀变英安岩。从标本测定情况来看,蚀变角砾岩和英安岩均具有较高的电阻率,因此判断该异常出现的高阻情况可能为围岩的高电阻率引起
JD2异常

NW向

纺锤形

平均值为3.2%1 000~1 800推测该异常实是Ⅰ-3号脉状铅锌矿体的直接反映,矿体赋存于构造破碎带,褐铁矿化强烈,顶、底板均为灰绿色碎裂英安岩,矿石类型为构造角砾岩型。矿物组合为方铅矿、闪锌矿、褐铁矿和黄铁矿
JD3-1异常EW向平均值为3.6%1 200~2 000该异常所处地质环境与JD2异常极为相似,推断是由F2断层北边的次级断裂里充填的脉状铅锌多金属矿体所引起的异常
JD3-2异常

NW向

条带状

平均值为4.2%<800异常处于沟谷地段,其低阻特征主要是穿过沟谷的含水断层(F6)引起。引起高视极化率异常的原因则比较复杂,北西部分异常相对低值区主要是水系及第四系冲积物覆盖区,应为离子导电引起的异常
JD3-3异常、JD3-4异常倒“八”字型平均值为5.6%,极值为7.3%1 000~3 000该异常地处火山岩与石英闪长岩接触带,异常区黄铁矿化和褐铁矿化十分强烈。该区域黄铁矿化、褐铁矿化均能引起3%~7%左右的视极化率异常,推测该2处异常主要是由黄铁矿化、褐铁矿化引起
JD3-5异常

NW向

条带型

平均值为3.2%一般低于800Ⅱ-4及Ⅱ-5号铅锌矿体位于该异常区,而在ZK07号深部钻孔于40.1 m及78.2 m处见铅锌矿脉,推断该异常为矿致异常
JD4异常EW向“茶壶”形平均值为3.8%,极值为5.0%<800该异常高极化、中低阻特征明显,浅部有由TC5号探槽控制的铅锌矿体与之对应,在深部则有ZK04见矿钻孔与其对应
JD5异常近EW向横放的“L”形平均值为3.2%约500异常区黄铁矿化和褐铁矿化较强烈,推测该异常由黄铁矿化和褐铁矿化引起,但不排除深部有铅锌矿化体的可能
JD6异常形态不规则平均值为3.3%,极值为6.0%<500异常具有明显的低阻、高极化特征,Ⅰ-5号矿体位于该异常区,矿体赋存于构造破碎带中,含矿岩石为矿化蚀变英安岩,顶、底板为灰绿色碎裂英安岩,矿石类型为构造角砾岩型。褐铁矿化强烈,矿石矿物有方铅矿、闪锌矿、褐铁矿及黄铁矿。推测该异常主要是由Ⅰ-5号矿体引起
JD7异常

SN向

椭球形

平均值为3.0%<500该异常地质环境与JD6异常相似,推测是由F4主断裂的次级断裂里充填的脉状铅锌多金属矿体所引起的异常,但由于异常规模很小,幅值也不高,推测引起异常的矿体较小
JD8异常NW向形态不规则平均值3.4%,极值5.8%<500异常主要沿用珠俄布西沟的2条支流展布,异常区地势较缓,含水丰富,推测该异常是由地下水溶液中的离子导电引起的

图4

德新铅多金属矿区激电中梯视电阻率(a)和视极化率(b)异常平面图"

图5

德新铅多金属矿区激电中梯剖面图"

图6

德新铅多金属矿区成矿元素R型聚类分析谱系图"

表6

德新铅多金属矿床微量元素最大方差旋转因子载荷矩阵"

元素F1F2F3
Cu0.933-0.137-0.270
In0.930-0.074-0.232
Zn0.921-0.284-0.015
Mo0.909-0.265-0.079
Pb0.908-0.268-0.290
Ni0.850-0.153-0.416
Sc-0.1580.9780.029
Cr-0.2470.9430.178
Li-0.2090.9310.244
Be-0.2570.0860.960
Hf-0.3140.5060.779
方差贡献率/%47.72929.50818.268
累计贡献率/%47.72977.23795.505

图7

德新铅多金属矿区微量元素组合各因子关系图"

表7

德新铅多金属矿区各成矿元素逐步回归分析系数汇总"

元素模型未标准化系数标准化系数BetaVIFRR2调整后R2F显著性
B标准错误
Pb1(常量)-0.1090.103--0.9610.9230.915120.0460.000
Mo0.9270.0850.9611.000
2(常量)-0.1060.041--0.9950.9890.987409.6840.000
Mo0.6380.0520.6612.360
Ni0.3780.0510.3952.360
3(常量)-0.1490.021--0.9990.9980.9971 166.2630.000
Mo0.6990.0270.7242.818
Ni0.7670.0750.80021.483
In-0.4840.088-0.46425.076
Zn1(常量)-0.0130.051--0.9900.9800.978491.5810.000
Mo0.9360.0420.9901.000
Cu1(常量)-0.3380.022--0.9910.9820.980538.9990.000
In0.4680.0200.9911.000
2(常量)-0.3420.013--0.9970.9940.993767.1650.000
In0.3630.0270.7684.997
Pb0.1130.0260.2494.997
Ni1(常量)0.8510.095--0.9770.9540.949207.7400.000
Cu2.2490.1560.9771.000
2(常量)0.8210.073--0.9880.9760.971182.4780.000
Cu2.0520.1380.8911.336
Be-0.2250.079-0.1711.336
3(常量)0.1550.029--0.9980.9960.994605.9230.000
Be-0.2840.035-0.2161.263
In0.9330.0290.8581.325
Sc-0.0810.026-0.0761.073
4(常量)0.1710.020--0.9990.9980.9971017.6740.000
Be-0.2710.024-0.2061.302
In1.0160.0320.9343.507
Sc-0.1010.018-0.0951.209
Zn-0.1010.031-0.0953.353
Ali M A H, Mewafy F M, Qian W,et al,2023.Integration of electrical resistivity tomography and induced polarization for characterization and mapping of (Pb-Zn-Ag) sulfide deposits[J].Minerals,13(7):134-141.
Fu Yong, Wang Lijin, Chai Fengmei,et al,2009.The application of multi-variate linear regression combined with stepwise regression analysis for Cu-Ni sulfide deposit of Baishiquan[J].Earth Science Frontiers,16(1):373-380.
Gao Shunbao,2015.Copper-Iron Polymetal Metallogenic Regularity and Election of Target Areas in the Western of Gangdise Metallogenic Belt,Tibet[D].Wuhan:China University of Geosciences.
Gu Xiao, Wang Cuizhi, Xie Pengfei,2018.The application of multivariate statistical analysis to study of the Zijinshan copper gold deposit[J].Contributions to Geology and Mineral Resources Research,33(3):480-489.
Guo Feng, Sun Xiang, Wu Song,2020.Mineral composition of amphibole in Zhunuo porphyry Cu deposition the western segment of Gangdese belt and its geological significance[J].Mineralogy and Petrology,40(2):48-58.
Hao Jinyue, Ran Fengqin, Ji Duo,et al,2021.Characteristics and genesis of hydrothermal breccias in Sinongduo Ag polymetallic deposit,Tibet[J].Mineral Deposits,40(3):509-522.
Hou Zengqian, Zheng Yuanchuan, Lu Zhanwu,et al,2020.Growth,thickening and evolution of the thickened crust of the Tibet Plateau[J].Acta Geologica Sinica,94(10):2797-2815.
Jiang Shaoqing, Li Yanbo, Feng Jun,et al,2017.Geological,geophysics features and its exploration significance of Rongna Cu deposit in Ngari County of Tibet,China[J].Progress in Geophysics,32(1):167-176.
Jin Luying, Qin Kezhang, Li Guangming,et al,2015.Trace element distribution in sulfides from the Chalukou porphyry Mo-vein-type Zn-Pb system,northern Great Xing’an Range,China:Implications for metal source and ore exploration[J].Acta Petrologica Sinica,31(8):2417-2434.
Ju Peijiao,2021.Tectono-geochemical characteristics of Liyuan gold mine in the north section of Taihang Mountain[J].Gold Science and Technology,29(1):64-73.
Ke Xianzhong, Long Wenguo, Zhou Dai,et al,2017.Metallogenesis of the main collisional period in mid-western Gangdise:Zircon U-Pb geochronology of the granite porphyry in Dexin deposit,Tibet[J].Geological Bulletin of China,36(5):772-779.
Kenta U, Hikaru I,2017.Geochemical differentiation processes for arc magma of the Sengan volcanic cluster,Northeastern Japan,constrained from principal component analysis[J].Lithos,(290/291):60-75.
Li S H, Li J Q, Ferrand P T,et al,2023.Deep geophysical anomalies beneath the Changbaishan volcano[J].Journal of Geophysical Research:Solid Earth,128(4):45-59.
Li Wentan, Zhang Ning, Zhang Zeming,2022.Metamorphism of Late Cretaceous granite in the eastern Gangdese magmatic arc:Crustal growth and reworking[J].Acta Geologica Sinica,96(3):881-896.
Li Yinglong,2017.Study on geological characteristics of Dexin lead-zinc deposit in Tibet autonomous region[J].Chemical Engineering Design Communications,43(5):220-221.
Ling Chen, Li Guangming, Zhang Zhi,et al,2021.Source of metallogenic material of Lawu Zn-Cu polymetallic deposit in Gangdise metallogenic belt,Tibet:Sulfide LA-MC-ICP-MS in-situ S isotope constraint[J].Northwestern Geology,54(2):43-54.
Liu Demin, Yang Weiran, Guo Tieying,2020.Discussion on Cenozoic tectonic development and dynamics in South Tibet[J].Earth Science Frontiers,27(1):194-203.
Liu Yongsheng, Luo Xianrong, Cao Baidi,et al,2023.Soil geochemical characteristics and prospecting prediction in Sanyu area,Li County,Gansu Province[J].Northwestern Geology,56(6):340-351.
Mao Guangwu, Yan Xieping, Shu Wenhui,et al,2016.Research progresses on cryptoexplosion breccias type gold deposits[J].Contributions to Geology and Mineral Resources Research,31(3):396-408.
Mosusu N, Bokuik A, Petterson M,et al,2021.Stream sediment datasets and geophysical anomalies:A recipe for porphyry copper systems identification—The eastern Papuan Peninsula experience[J].Geosciences,11(7):299-319.
Pang Xinlong, Yan Junli, Yu Jifeng,et al,2022.Geophysical and geochemical characteristics and prospecting potential of the Guozhuang area Juxian County,Shandong Province[J].Geology and Exploration,58(3):561-572.
Rakoto H A, Riva R, Ralay R,et al,2019.Evaluation of flake graphite ore using self-potential (SP),electrical resistivity tomography (ERT) and induced polarization (IP) methods in east coast of Madagascar[J].Journal of Applied Geophysics,169:134-141.
Tan Gang, She Hongquan, Chang Guoxiong,et al,2011.Regional metallogenic predication and mineral reserves evaluation of lead and zinc deposits in the Gangdise polymetallic ore-forming belt,Tibet[J].Acta Petrologica et Mineralogica,30(1):83-96.
Wang Ce,2018.Geological characteristics and prospecting ideas of the Dexin Pb polymetallic deposit in Tibet[J].World Nonferrous Metals,10(10):104-105.
Wang Liqiang, Tang Juxing, Wangxiu Danzhen,et al,2017.Geological characteristics of lead-zinc ore deposits in Qinghai-Tibet Plateau[J].Science and Technology Review,35(12):83-88.
Wang Xiaohong, Yang Jianguo, Wang Lei,et al,2023.The application effect of geological geophysical and geochemical exploration comprehensive method in Hongliugou copper-nickel deposit,Beishan,Gansu Province[J].Northwestern Geology,56(6):254-261.
Wang Yuliang, Su Huiping, Zhang Kai,et al,2010.The geological characteristics and prospecting indicators of the Dexin lead-zinc mine in Xietongmen County,Tibet[J].Geology of Shaanxi,28(2):40-46.
Wu Xiaoyong,2011.Geophysical survey report of Dexin lead polymetallic deposit in Xietongmen County,Xizang Province [R].Chengdu:Sichuan Metallurgical Geological Exploration Institute.
Xie Fuwei, Lang Xinghai, Tang Juxing,et al,2022.Metallogenic regularity of Gangdese metallogenic belt,Tibet[J].Mineral Deposits,41(5):952-974.
Xun Feng, Liu Jianxin, Liu Chunming,et al,2019.Application of induced polarization method in a gold mining area in Guangxi Province[J].Gold Science and Technology,27(3):339-349.
Yang Zongyao, Tang Juxing, Ren Dongxing,et al,2024.Geochemical and geophysical exploration in Sinongduo Ag polymetallic deposit,Tibet[J].Earth Science,49(3):1081-1103.
Yao X F, Tang J X, Ding S,et al,2014.Genesis and main differences of Jiama and Qulong super‐large deposit in Gangdese metallogenic belt[J].Acta Geologica Sinica‐English Edition,88(Supp.2):633-634.
Yuan Y S, Li S P, Peng J,et al,2019.An integrated ore prospecting model for the Nyasirori gold deposit in Tanzania[J].China Geology,2(4):407-421.
Zeng Gaofu, Jing Rongzhong, Deng Guian,et al,2015.Researches on geophysical anomalies over stratabound copper deposits in the copper belt province of Zambia[J].Geophysical and Geochemical Exploration,39(5):948-953.
Zhang J K, Shao Y J, Liu Z F,et al,2021.Sphalerite as a record of metallogenic information using multivariate statistical analysis:Constraints from trace element geochemistry[J].Journal of Geochemical Exploration,232:106883.
Zhang Mingming, Long Jinxiao, Zhou Guoyu,et al,2022.A pXRF study on element enrichment law of Qiaomaishan Cu polymetallic deposit,Anhui,China[J].Mineral Deposits,41(3):643-658.
Zhao Chunrong, Bian Hongye, Liu Tao,et al,2015.Study on the geophysical features and its metallogenic significance of Shiwuliqiao gold deposit in Heilongjiang Province[J].Gold Science and Technology,23(3):1-6.
Zheng Haitao,2018.Study on the Genesis and Prospecting Direction of Polymetallic Deposits in the Zexue Area,Tibet[D].Wuhan:China University of Geosciences.
Zou Tao, Zhu Xinyou, Yang Shangsong,et al,2022.A comprehensive model of tin polymetallic ore prospecting and exploration in the southern Great Xing’an Range—A case study of the ore-forming system of Weilasituo polymetallic ore[J].Acta Geologica Sinica,96(2):673-690.
付勇,汪立今,柴凤梅,等,2009.多元线性回归和逐步回归分析在白石泉Cu-Ni硫化物矿床研究中的应用[J].地学前缘,16(1):373-380.
高顺宝,2015.西藏冈底斯西段铜铁多金属成矿作用与找矿方向[D].武汉:中国地质大学.
顾逍,王翠芝,谢鹏飞,2018.多元统计分析在紫金山铜金矿床研究中的应用[J].地质找矿论丛,33(3):480-489.
郭峰,孙祥,吴松,2020.冈底斯西段朱诺斑岩铜矿床角闪石成分特征及其地质意义[J].矿物岩石,40(2):48-58.
郝金月,冉凤琴,多吉,等,2021.西藏斯弄多银多金属矿床热液角砾岩特征及成因分析[J].矿床地质,40(3):509-522.
侯增谦,郑远川,卢占武,等,2020.青藏高原巨厚地壳:生长、加厚与演化[J].地质学报,94(10):2797-2815.
江少卿,李彦波,冯军,等,2017.西藏荣那斑岩铜矿地质地球物理特征及找矿意义[J].地球物理学进展,32(1):167-176.
金露英,秦克章,李光明,等,2015.大兴安岭北段岔路口斑岩Mo-热液脉状Zn-Pb成矿系统硫化物微量元素的分布、起源及其勘探指示[J].岩石学报,31(8):2417-2434.
鞠培姣,2021.太行山北段梨园金矿构造地球化学特征[J].黄金科学技术,29(1):64-73.
柯贤忠,龙文国,周岱,等,2017.西藏冈底斯中西段主碰撞期成矿事件——德新矿区花岗斑岩锆石U-Pb年龄证据[J].地质通报,36(5):772-779.
李文坛,张宁,张泽明,2022.冈底斯岩浆弧东段晚白垩世花岗岩的变质作用:新生地壳生长与再造[J].地质学报,96(3):881-896.
李应龙,2017.西藏则学地区德新铅锌矿矿床地质特征研究[J].化工设计通讯,43(5):220-221.
凌晨,李光明,张志,等,2021.西藏冈底斯成矿带拉屋锌铜多金属矿床成矿物质来源:硫化物LA-MC-ICP-MS原位S同位素约束[J].西北地质,54(2):43-54.
刘德民,杨巍然,郭铁鹰,2020.藏南地区新生代多阶段构造演化及其动力学的探讨[J].地学前缘,27(1):194-203.
刘永胜,罗先熔,曹佰迪,等,2023.甘肃省礼县三峪地区土壤地球化学特征及找矿预测[J].西北地质,56(6):340-351.
毛光武,严卸平,舒文辉,等,2016.隐爆角砾岩型金矿床的研究进展[J].地质找矿论丛,31(3):396-408.
庞新龙,燕军利,余继峰,等,2022.山东莒县果庄地区物化探特征及找矿前景[J].地质与勘探,58(3):561-572.
谭钢,佘宏全,常帼雄,等,2011.西藏冈底斯多金属成矿带铅锌矿定位预测与资源潜力评价[J].岩石矿物学杂志,30(1):83-96.
王策,2018.西藏德新铅多金属矿地质特征及找矿思路浅析[J].世界有色金属,10(10):104-105.
王立强,唐菊兴,旦真王修,等,2017.青藏高原铅锌矿资源特征[J].科技导报,35(12):83-88.
王小红,杨建国,王磊,等,2023.地质物化探综合方法在甘肃北山红柳沟铜镍矿的应用[J].西北地质,56(6):254-261.
王育良,苏会平,张凯,等,2010.西藏谢通门县德新铅锌矿地质特征及找矿标志[J].陕西地质,28(2):40-46.
吴小勇,2011.西藏谢通门县德新铅多金属矿普查物探工作报告[R].成都:四川省冶金地质勘查院.
谢富伟,郎兴海,唐菊兴,等,2022.西藏冈底斯成矿带成矿规律[J].矿床地质,41(5):952-974.
寻峰,柳建新,刘春明,等,2019.频率域激电法在广西某金矿区的找矿应用[J].黄金科学技术,27(3):339-349.
杨宗耀,唐菊兴,任东兴,等,2024.西藏斯弄多银多金属矿床地球物理和地球化学勘查进展[J].地球科学,49(3):1081-1103.
曾高福,敬荣中,邓贵安,等,2015.赞比亚铜带省层控型铜矿物探电性异常特征[J].物探与化探,39(5):948-953.
张明明,龙瑾潇,周国玉,等,2022.基于pXRF的荞麦山铜多金属矿床元素富集规律研究[J].矿床地质,41(3):643-658.
赵春荣,边红业,刘涛,等,2015.黑龙江十五里桥金矿地球物理特征及其成矿意义[J].黄金科学技术,23(3):1-6.
郑海涛,2018.西藏则学地区多金属矿床成因及找矿方向[D].武汉:中国地质大学.
邹滔,祝新友,杨尚松,等,2022.大兴安岭南段锡多金属矿找矿勘查综合模型——以维拉斯托锡多金属矿成矿系统为例[J].地质学报,96(2):673-690.
[1] 娄元林, 钱建利, 朱志平, 巴永, 杨明龙, 杨桃. 物化遥综合找矿方法在西藏隆子县拉九地区的应用[J]. 黄金科学技术, 2024, 32(2): 241-257.
[2] 李子永,张利峰,田海川,王旭东. 高密度电阻率法在莱州矿集区环境地质调查中的应用[J]. 黄金科学技术, 2023, 31(1): 78-87.
[3] 马承,宋伊圩,孙彪,王占彬. 西秦岭岷礼成矿带地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(4): 489-499.
[4] 杨征坤, 行天纬, 张忠坤, 林彬, 唐攀, 赫健, 次真白桑, 焦海军, 杨阳, 吴纯能, 吴鑫. 西藏甲玛超大型斑岩成矿系统找矿方向[J]. 黄金科学技术, 2019, 27(5): 648-658.
[5] 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例[J]. 黄金科学技术, 2019, 27(2): 207-215.
[6] 韩珂,安乐,杨兴科,刘淑文. 数学地质方法在南秦岭汉阴黄龙金矿中的应用[J]. 黄金科学技术, 2019, 27(1): 1-14.
[7] 唐卫东, 马庆, 王郅睿. 青海献礼山地区1/5万水系沉积物地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(3): 289-296.
[8] 高帅,曾庆栋,于昌明,邢宝山,荆林海,叶杰,范宏瑞,杨奎锋. 遥感及综合物探方法用于山东招远南部隐伏成矿侵入体的空间定位[J]. 黄金科学技术, 2017, 25(5): 1-10.
[9] 尹西军,尹仕琳,郑丽娟. 黑龙江金厂矿区大徐山矿权区元素地球化学特征及找矿潜力评价[J]. 黄金科学技术, 2015, 23(6): 23-29.
[10] 牟银才,刘诚,唐构,姚薇. 可控源音频大地电磁测量(CSAMT)方法在寨上金矿区的应用[J]. 黄金科学技术, 2015, 23(5): 6-13.
[11] 文鹏,杨永强,王传亮,刘怀金,辛江. 江西德兴富家坞铜矿床中金银铼钴分布规律[J]. 黄金科学技术, 2015, 23(2): 17-27.
[12] 陈瑞林,马德锡,陈方博,李文良,陈孝强,王春生. 青海南戈滩矿区地球物理特征及找矿模式[J]. 黄金科学技术, 2013, 21(4): 54-59.
[13] 田跃斌,张涛,杨青云,赵博. R型因子分析在水系沉积物测量地球化学分区中的应用——以浙西北地区为例[J]. 黄金科学技术, 2013, 21(3): 48-54.
[14] 文武,高玉文,刘洪臣,毛木林,齐帅军. 黔西南贞丰背斜卡林型金矿的综合地球物理勘查—钻孔岩芯物性研究[J]. 黄金科学技术, 2013, 21(2): 1-7.
[15] 董富权. 西藏古堆—隆子地区断裂构造分形特征及其地质意义[J]. 黄金科学技术, 2012, 20(6): 41-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[6] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[7] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .
[8] 刘新会,刘家军,陈彩华. 西秦岭寨上特大型金矿床硫盐矿物特征及其成因意义[J]. J4, 2010, 18(4): 6 -11 .
[9] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[10] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .