img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (3): 425-436.doi: 10.11872/j.issn.1005-2518.2024.03.072

• 采选技术与矿山管理 • 上一篇    下一篇

胶东地区黄金矿山细尾砂胶结充填应用研究

胡松涛1(),朱庚杰2(),张军童2,徐世群3,寇云鹏2   

  1. 1.山东黄金集团有限公司,山东 济南 250000
    2.山东黄金矿业科技有限公司,山东 济南 250101
    3.山金重工有限公司,山东 莱州 261400
  • 收稿日期:2024-03-13 修回日期:2024-04-25 出版日期:2024-06-30 发布日期:2024-07-05
  • 通讯作者: 朱庚杰 E-mail:husongtao@sd-gold.com;zhugengjie365@sina.com
  • 作者简介:胡松涛(1981-),男,四川遂宁人,高级工程师,从事金属矿山开采研究工作。husongtao@sd-gold.com
  • 基金资助:
    山东省重大科技创新工程项目“金属矿深部开采环境精细探测技术与工程风险分析方法”(2019SDZY05)

Application Research on Cemented Fine Tailings Backfill of Gold Mines in the Jiaodong Area

Songtao HU1(),Gengjie ZHU2(),Juntong ZHANG2,Shiqun XU3,Yunpeng KOU2   

  1. 1.Shandong Gold Group Co. , Ltd. , Jinan 250000, Shandong, China
    2.Shandong Gold Mining Technology Co. , Ltd. , Jinan 250101, Shandong, China
    3.Shandong Gold Heavy Industry Co. , Ltd. , Laizhou 261400, Shandong, China
  • Received:2024-03-13 Revised:2024-04-25 Online:2024-06-30 Published:2024-07-05
  • Contact: Gengjie ZHU E-mail:husongtao@sd-gold.com;zhugengjie365@sina.com

摘要:

为探究胶东地区黄金矿山细尾砂充填可行性,分析了细尾砂粒级和矿物特征,使用新型胶凝材料制备了细尾砂充填料,通过开展流变和管路输送性能试验,研究了充填料流动性,分析了充填体强度及其形成机理。结果表明:(1)比表面积大和黏土矿物含量高是造成细尾砂充填料流动阻力大和强度低的内因;(2)细尾砂料浆更易出现层流,且层流—紊流临界流速随浓度的增加先缓慢增长再快速增长,结合流变建立的层流—紊流临界流速模型结果可指导控制管路输送流速;(3)随着钙矾石(AFt)和水化硅铝酸钙(C-A-S-H)的生成,细尾砂料浆自由水转化成结合水,同时充填体结构在水化产物的填充和包裹作用下不断致密,二者促进了充填体强度的增长。该研究证明通过确定合适浓度和使用新型胶凝材料能够获得满足矿山需求的细尾砂充填体强度。

关键词: 细尾砂, 物化性质, 矿渣基胶凝材料, 管输性能, 水化产物, 微观结构, 强度

Abstract:

The tailings yield of gold mines is typically high leading to the utilization of a small amount of binder in dense tailings slurry for the preparation of backfilling materials used in underground goaf filling.This practice facilitates the resource utilization of tailings and goaf treatment.However,the particle size of tailings used for backfilling is becoming finer and finer,and the high transport resistance of fine tailings and the low strength of cemented fine tailings backfill are the problems that hinder its application.In order to solve this problem,the fine tailings backfilling in gold mine in Jiaodong area was taken as the engineering background in this paper,and the grain size and mineral composition of fine tailings were analyzed.The slag based binder proposed in the previous study was used to prepare the fine tailings backfilling material.The pipeline conveying performance of fillers was analyzed by rheological test and L-tube test.The internal microstructure of the backfill was characterized by scanning electron microscopy,uniaxial compressive strength test was carried out,and the strength formation and growth mechanism of the fine tailings backfill was analyzed.The results show that,in addition to the large specific surface area of fine tailings,the high proportion of low hardness minerals(Mohs hardness less than 3) such as clay minerals is another internal reason for the high flow resistance of fine tailings backfilling slurry and the decrease of strength of backfill.The larger viscosity is conducive to the formation of laminar flow of fine tailings.The laminar-turbulent critical velocity of fine tailings slurry first increases slowly and then rapidly with the increase of concentration.The critical velocity of fine tailings slurry can be determined by the improved laminar-turbulent critical velocity model,so as to control the slurry velocity.The fine tailings slurry has a reasonable filling concentration of 64%,the slurry of this concentration is laminar flow and can achieve full pipe state,and the strength of the fine tailings filling body can meet the mine demand.The slag-based binder is suitable for fine tailings backfilling.With the hydration of the binder,most of the free water in the slurry becomes the binding water of the hydration product ettringite(AFt) and the hydrated calcium silicaluminate (C-A-S-H).Moreover,the inner structure of the backfill increases in density through the continuous filling of hydration products,which promotes the increase of strength.The research conclusion proves that the strength of fine tailings backfill that meet mining demand can be obtained by determining the suitable concentration of backfill slurry and using the new binder,and the feasibility of fine tailings backfill in gold mines was demonstrated.

Key words: fine tailings, physicochemical properties, slag based binder, pipeline transport performance, hydration products, microstructure, strength

中图分类号: 

  • TD853

图1

试验流程"

表1

试验方案"

试验内容尾砂类型及来源测试手段或设备料浆质量浓度/%AAS掺量/%
尾砂粒级和矿物分析焦家金矿、三山岛金矿、玲珑金矿、鑫汇公司全尾砂和分级细尾砂激光粒度仪、BPMA--
细尾砂充填料流变性焦家金矿分级细尾砂流变仪60、62、64、66、6810
细尾砂充填料管输性能焦家金矿分级细尾砂L管自流试验6410
室内充填体强度焦家金矿分级细尾砂UCS645、10、15、20
充填体微观形貌和产物焦家金矿分级细尾砂ESEM/EDS6410
井下充填体模拟强度焦家金矿分级细尾砂UCS6410

图2

分级细尾砂粒径分布"

图3

细尾砂料浆微观形貌和面扫元素分析结果"

表2

胶东地区典型黄金矿山全尾砂和分级细尾砂矿物组成和各组分质量占比"

矿山名称尾砂类型石英钾长石斜长石角闪石白云石方解石云母石膏黏土矿物
伊利石高岭石绿泥石
焦家金矿全尾砂61.44.612.1--1.619.50.30.00.30.2
细尾砂43.97.212.40.5-3.131.01.00.00.50.4
三山岛金矿全尾砂60.74.911.7--1.620.1-0.00.90.0
细尾砂54.92.66.9--2.031.80.60.01.30.0
玲珑金矿全尾砂40.311.037.11.1-0.88.20.40.00.50.6
细尾砂31.59.034.80.4-0.920.70.70.01.30.8
鑫汇公司全尾砂42.83.15.30.927.18.310.0-0.01.01.5
细尾砂35.52.74.3-26.59.216.4-0.01.73.6

图4

均质料浆的Δp-U典型关系(费祥俊,1994)"

图5

不同质量浓度细尾砂料浆的剪切速率与剪切应力"

表3

细尾砂料浆层流—紊流临界流速的计算结果"

细尾砂料浆浓度/%屈服应力τB/Pa刚度系数η/(Pa·s)料浆密度ρm/(kg·m-3临界流速模型计算值/(m·s-1基于流变临界流速UD/(m·s-1
UD1UD2UD3
605.830.081 585.231.781.131.541.03
6211.440.101 615.982.351.572.011.23
6419.700.151 646.803.222.052.551.63
6632.650.211 677.624.242.613.141.93
6854.390.251 708.375.213.343.942.33

图6

细尾砂充填料浆的层流—紊流临界流速计算结果"

图7

不同质量浓度细尾砂充填料浆在管路出口的状态"

表4

L管自流试验结果"

序号料浆浓度/%管路压力/MPa压差/MPa流量/(m3·h-1流速/(m·s-1压力损失/(MPa·km-1
P1P2
166.00.0300.0110.0195.300.754.56
264.00.0230.0080.0147.801.103.51
362.00.0150.0050.0109.201.202.39
460.00.0100.0040.00611.501.531.49

图8

井下充填体模拟试验和强度测试"

图9

细尾砂充填体强度"

图10

细尾砂充填体内部微观结构和水化产物"

Belem T, Benzaazoua M,2008.Design and application of underground mine paste backfill technology[J].Geotechnical and Geological Engineering,26(2):147-174.
Chen Xianshu, Yang Jijun, Liu Wanning,et al,2018.Research and application of ultrafine tailing cemented filling material[J].Mining Technology,18(3):19-22.
Cheng Haiyong, Wu Aixiang, Wu Shunchuan,et al,2022.Research status and development trend of solid waste backfill in metal mines[J].Chinese Journal of Engineering,44(1):11-25.
Deng D Q, Liu L, Yao Z L,et al,2017.A practice of ultra-fine tailings disposal as filling material in a gold mine[J].Journal of Environmental Management,196:100-109.
Elahi M, Hossain M M, Karim M R,et al,2020.A review on alkali-activated binders:Materials composition and fresh properties of concrete[J].Construction and Building Materials,260:119788.
Fall M, Benzaazoua M, Ouellet S,2005.Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill[J].Minerals Engineering,18(1):41-44
Fei Xiangjun,1994.Slurry and Granular Material Transport Hydraulics[M].Beijing:Tsinghua University Press.
Guo Lijie, Liu Guangsheng, Ma Qinghai,et al,2022.Research progress on mining with backfill technology of underground metalliferous mine[J].Journal of China Coal Society,47(12):4182-4200.
Gitari M W, Akinyemi A S, Thobakgale R,et al,2018.Physicochemical and mineralogical characterization of Musina mine copper and New Union gold mine tailings:Implications for fabrication of beneficial geopolymeric construction materials[J].Journal of African Earth Sciences,137:218-228.
Long Hai, Bao Rongtao, Tan Shilin,et al,2023.Experimental study on the mechanical properties of layered tailing sand cemented backfill and optimization[J].Gold Science and Technology,31(5):763-772.
Li Cuiping, Huang Zhenhua, Ruan Zhuen,et al,2022.Analysis of the research progress in the mechanism of particle mechanics action on the rheological behavior of paste in metal mines[J].Chinese Journal of Engineering,44(8):1293-1305.
Liang Chao, Ma Hongwei,2023.Development and application of tailings comprehensive utilization and filling system in Fushan gold mine[J].China Mining Magazine,32(Supp.1):223-228.
Lin Tianye,2016.Research on the Flow Properties of the Gangue Paste-like Slurry[D].Beijing:China University of Mining and Technology(Beijing).
Liu Juanhong, Zhou Zaibo,2022.Comprehensive utilization of ultra-fine metal tailings and its problems and countermeasures in the application of backfill materials[J].Metal Mine,51(7):240-249.
Qiu J P, Guo Z, Yang L,et al,2020.Effect of tailings fineness on flow,strength,ultrasonic and microstructure characteristics of cemented paste backfill[J].Construction and Building Materials,263:120645.
Ruan Zhuen, Wu Aixiang, Jiao Huazhe,et al,2022.Advances and trends on thickening of full-tailings slurry in China[J].The Chinese Journal of Nonferrous Metals,32(1):286-301.
Simon D, Grabinsky M,2013.Apparent yield stress measurement in cemented paste backfill[J].International Journal of Mining,Reclamation and Environment,27(4):231-256.
Wang Hongjiang, Wang Xiaolin, Zhang Xi,et al,2022.Deep cone dynamic flocculation thickening of ultrafine full tailings[J].Chinese Journal of Engineering,44(2):163-169.
Wang Ronglin, Lu Hu, Wang Huan,et al,2021.Study on performance optimization and mechanism of superfine tailings backfill materials[J].Metal Mine,50(6):131-135.
Wu Xianpeng, Lu Junjie, Zhao Zhongyu,et al,2022.Reaearch status and development trend of low carbon cementitious materials used to substitute cement for concrete[C]//Proceedings of the 22nd National Symposium on Modern Structural Engineering.Tianjin:Tianjin University.
Xu W, Li Q, Liu B,2020.Coupled effect of curing temperature and age on compressive behavior,microstructure and ultrasonic properties of cemented tailings backfill[J].Construction and Building Materials,237:117738.
Ye C Q, He F, Shu H,et al,2015.Preparation and properties of sintered glass-ceramics containing Au-Cu tailing waste[J].Materials and Design,86:782-787.
Yin Shenghua, Liu Jiaming, Shao Yajian,et al,2020.Influence rule of early compressive strength and solidification mechanism of full tailings paste with coarse aggregate[J].Journal of Central South University(Science and Technology),51(2):478-488.
Yu Runcang,2020.Theory and Engineering Practice of Cemented Backfill in Metal Mine[M].Beijing:Metallurgical Industry Press.
Zhang Lei, Guo Lijie, Xu Wenyuan,et al,2023.Research on crucial technological and material issues of applying fine tailings to mine filling:A review[J].Materials Reports,37(23):102-112.
Zhang Meidao, Rao Yunzhang, Xu Wenfeng,et al,2021.Orthogonal experiment on optimization of filling ratio of full tailings paste[J].Gold Science and Technology,29(5):740-748.
Zhu G, Zhu W, Qi Z, Yan B,et al,2022.One-part alkali-activated slag binder for cemented fine tailings backfill:proportion optimization and properties evaluation[J].Environmental Science and Pollution Research,29(49):73965-73877.
Zhu Gengjie, Hou Chen, Song Zepu,et al,2024.Preliminary study on rheological characteristics of viscous fine tailings slurry[J/OL].Metal Mine,1-13..
陈贤树,杨计军,刘万宁,等,2018.超细尾砂胶结充填材料的研究与应用[J].采矿技术,18(3):19-22.
程海勇,吴爱祥,吴顺川,等,2022.金属矿山固废充填研究现状与发展趋势[J].工程科学学报,44(1):11-25.
费祥俊,1994.浆体与粒状物料输送水力学[M].北京:清华大学出版社.
郭利杰,刘光生,马青海,等,2022.金属矿山充填采矿技术应用研究进展[J].煤炭学报,47(12):4182-4200.
海龙,鲍荣涛,谭世林,等,2023.分层尾砂胶结充填体力学特性及优化试验研究[J].黄金科学技术,31(5):763-772.
李翠平,黄振华,阮竹恩,等,2022.金属矿膏体流变行为的颗粒细观力学作用机理进展分析[J].工程科学学报,44(8):1293-1305.
梁超,马宏伟,2023.阜山金矿尾砂综合利用及充填系统研发与应用[J].中国矿业,32(增1):223-228.
林天埜,2016.矸石似膏体充填料浆流动性能研究[D].北京:中国矿业大学(北京).
刘娟红,周在波,2022.细粒级金属尾砂的综合利用及在矿山充填中存在的问题和对策[J].金属矿山,51(7):240-249.
阮竹恩,吴爱祥,焦华喆,等,2022.我国全尾砂料浆浓密研究进展与发展趋势[J].中国有色金属学报,32(1):286-301.
王洪江,王小林,张玺,等,2022.超细全尾砂深锥动态絮凝浓密试验[J].工程科学学报,44(2):163-169.
王荣林,陆虎,王欢,等,2021.超细尾砂充填材料性能优化及机理研究[J].金属矿山,50(6):131-135.
武献鹏,卢俊杰,赵忠宇,等,2022.用于替代水泥制备混凝土的低碳胶凝材料研究现状与发展趋势[C]//第二十二届全国现代结构工程学术研讨会论文集.天津:天津大学.
尹升华,刘家明,邵亚建,等,2020.全尾砂—粗骨料膏体早期抗压强度影响规律及固化机理[J].中南大学学报(自然科学版),51(2):478-488.
于润沧,2020.金属矿山胶结充填理论与工程实践[M].北京:冶金工业出版社.
张雷,郭利杰,许文远,等,2023.细尾砂在矿山充填应用中关键工艺与材料的研究进展[J].材料导报,37(23):102-112.
张美道,饶运章,徐文峰,等,2021.全尾砂膏体充填配比优化正交试验[J].黄金科学技术,29(5):740-748.
朱庚杰,侯晨,宋泽普,等,2024.粘性细尾砂料浆流变特性初步研究[J/OL].金属矿山,1-13..
[1] 刘伟, 闫晓宇, 刘庆朋, 孙欣然. 根土复合体增强矿区排土场边坡抗剪强度试验研究[J]. 黄金科学技术, 2024, 32(5): 871-881.
[2] 盛宇航, 裴佃飞, 齐兆军, 荆晓东. 尾砂粒级组成对胶结充填料流变特性与强度的影响[J]. 黄金科学技术, 2024, 32(4): 631-639.
[3] 石英, 聂锐洋, 周诗彤, 陆思成, 卿子萱. 含硫酸盐废水对磷石膏胶结充填体材料性能的影响[J]. 黄金科学技术, 2024, 32(3): 416-424.
[4] 张玉, 刘晓敏, 石怡安, 陈铁林, 王展魁, 陈文海, 孙加奇, 安平生. 动静复合拉拔作用下锚杆结构的破坏机制研究[J]. 黄金科学技术, 2024, 32(3): 481-490.
[5] 李杰林,王京瑶,肖益盖,李小双. 不同应力路径下岩石细观力学性能离散元研究[J]. 黄金科学技术, 2023, 31(1): 102-112.
[6] 杜广盛,陈世江,武海龙. 温度影响下花岗岩宏、细观力学性质演化规律[J]. 黄金科学技术, 2022, 30(6): 935-947.
[7] 杨晴,杨仕教,张冉玥. 基于上澄清液浊度的超细尾砂絮凝沉降试验[J]. 黄金科学技术, 2022, 30(6): 948-957.
[8] 徐先锋,邢鹏飞,汪泳,王岁红. 基于L型回弹仪的岩石力学特性试验研究[J]. 黄金科学技术, 2022, 30(4): 550-558.
[9] 刘业繁,石英. 磷石膏胶结充填体动态力学特性研究[J]. 黄金科学技术, 2022, 30(4): 574-584.
[10] 张子洋,曹平,刘智振,肖峰. 泥质粉砂岩蠕变特性及非线性蠕变模型研究[J]. 黄金科学技术, 2022, 30(3): 449-459.
[11] 范永亮, 崔继强, 张元坤, 李凤, 黄春云, 顾元统, 何建元. 混合粗骨料配比对充填体强度及浆体流动性能的影响规律[J]. 黄金科学技术, 2022, 30(2): 263-271.
[12] 林斌,田竹华,陈雨漫. 含水率对重塑红黏土反复抗剪强度影响试验研究[J]. 黄金科学技术, 2021, 29(5): 680-689.
[13] 李柏锦,李响,王彦,尹土兵,李夕兵. 温度冲击对花岗岩动态拉伸力学性能的影响[J]. 黄金科学技术, 2021, 29(4): 545-554.
[14] 海龙,徐博,赵鑫. 建筑垃圾制备膏体充填材料骨料级配优化[J]. 黄金科学技术, 2021, 29(4): 573-581.
[15] 赵鑫,海龙,徐博,程同俊. 电厂灰渣制备井下膏体充填材料试验研究[J]. 黄金科学技术, 2021, 29(4): 582-592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!