img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (3): 437-444.doi: 10.11872/j.issn.1005-2518.2024.03.100

• 采选技术与矿山管理 • 上一篇    下一篇

镍渣—全尾砂混合骨料配比试验研究

张涛1,2,3(),李德贤1,2,3,张鹏强1,2,3,赵国亮1,2,3,何宇1,2,3,牛猛3,俞军真1,2,3   

  1. 1.镍钴共伴生资源开发综合利用全国重点实验室,甘肃 金昌 737100
    2.金川镍钴研究设计院,甘肃 金昌 737100
    3.金川集团股份有限公司,甘肃 金昌 737100
  • 收稿日期:2023-07-20 修回日期:2024-01-04 出版日期:2024-06-30 发布日期:2024-07-05
  • 作者简介:张涛(1990-),男,甘肃兰州人,工程师,从事采矿充填技术研究工作。651727568@qq.com
  • 基金资助:
    镍钴资源综合利用国家重点实验室基金项目“镍渣在金川矿山膏体充填中的应用研究”(KY-YJ-05-2022);国家自然科学基金重点项目“细尾砂深度浓密中双屈服应力的变化机理及耦合效应”(52304121)

Experimental Study on the Ratio Proportioning of Nickel Slag-Full Tailings Mixed Aggregate

Tao ZHANG1,2,3(),Dexian LI1,2,3,Pengqiang ZHANG1,2,3,Guoliang ZHAO1,2,3,Yu HE1,2,3,Meng NIU3,Junzhen YU1,2,3   

  1. 1.State Key Laboratory of Nikel and Cobalt Associated Mineral Resources Development and Comprehensive Utilization, Jinchang 737100, Gansu, China
    2.Jinchuan Nickel-Cobalt Research and Design Institute, Jinchang 737100, Gansu, China
    3.Jinchuan Group Co. , Ltd. , Jinchang 737100, Gansu, China
  • Received:2023-07-20 Revised:2024-01-04 Online:2024-06-30 Published:2024-07-05

摘要:

为实现固废循环利用,降低尾砂和镍渣的固废堆存,开展了镍渣—全尾砂混合骨料配比试验。通过扫描电镜和X射线荧光光谱测定(XRF)方法分析了镍渣和全尾砂的粒级分布和化学成分,利用骨料堆积密实度理论确定了镍渣—尾砂的配比优化范围为4∶6、5∶5和6∶4;考虑料浆的流动性、和易性及充填体强度,最终推荐镍渣—全尾砂的最优配合比为5∶5,料浆的质量浓度为77%~79%,水泥添加量为310 kg/m3;针对镍渣—全尾砂充填,镍渣利用量最高不超过50%,最大质量浓度为79%,对应的剪切应力为112.634 Pa,黏度为0.938 Pa·s。

关键词: 镍渣, 全尾砂, 配比, 固废资源化, 充填骨料, 金川铜镍矿

Abstract:

The national sustainable development strategy attaches great importance to ecological and environmental protection issues,and the construction of green mines has become an inevitable trend in the development of mining industry.Solid waste filling is an effective measure to achieve green mines.In order to achieve the recycling of solid waste and reduce the solid waste storage of tailings and nickel slag,the mixed aggregate ratio test of nickel slag-full tailings was carried out to provide technical support for the industrial verification of nickel slag full tailings full solid waste filling.In order to study the optimal mix ratio of nickel slag-tailings paste slurry,the particle size distribution and chemical composition of nickel slag-tailings were analyzed by scanning electron microscopy (SEM),X-ray diffraction (XRF) and other test methods,and the optimal nickel slag-tailings ratio range of 4∶6,5∶5,6∶4 was determined by the aggregate packing density theory.Considering the fluidity,workability and backfill strength of slurry,the optimal mix ratio of nickel slag-total tailings is finally recommended as 5∶5,the mass concentration of slurry is 79%~81%,and the reasonable cement content is 310 kg/m3.For nickel slag-total tailings pumping filling in Jinchuan mine,the maximum utilization of nickel slags is not more than 50%,the maximum mass concentration of nickel slags can be pumped and filled is 81%,the corresponding shear stress is 112.634 Pa,and the viscosity is 0.938 Pa·s.

Key words: nickel slag, full tailings, proportioning, solid waste recycling, filling aggregate, Jinchuan copper-nickel mine

中图分类号: 

  • TU45

表1

充填集料物理参数"

材料类型

表观密度

/(g·cm-3

堆积密度

/(g·cm-3

堆积密实度孔隙率/%
镍渣3 7451 7800.4852
全尾砂2 7941 4750.5347

表2

镍渣化学成分分析结果"

成分含量成分含量
Ni0.21CaO3.54
Cu0.24MgO9.81
Fe41.66SiO233.18
Co0.09Al2O37.27
S0.78其他3.22

表3

全尾砂化学成分分析结果"

成分含量成分含量
SiO242.20SO33.37
CaO3.73K2O0.39
MgO32.71TiO20.33
Al2O34.04其他0.85
Fe2O312.14

表4

矿物活性评价指标及结果"

评价指标公式镍渣全尾砂
碱性率M0=CaO+MgOSiO2+Al2O30.330.79
活性率Mα=Al2O3SiO20.220.09

图1

镍渣粒径分布图"

图2

全尾砂粒级分布图"

表5

全尾砂粒径参数"

参数数值
d10/μm2.224
d30/μm7.962
d60/μm25.178
曲率系数1.132
不均匀系数11.240

图3

镍渣—全尾砂混合料的粒度特性曲线"

表6

镍渣—尾砂的堆集密实度试验结果"

混合料中镍渣占比/%混合料密度/(g·cm-3)实测堆积密实度计算堆积密实度差值
第1次第2次第3次平均
102.866800.4360.4340.4380.4360.4580.0220
202.943490.4940.4790.4630.4790.4890.0103
303.024400.5310.4980.5110.5130.5240.0107
403.109890.5530.5770.5470.5590.5540.0050
503.200350.6150.5930.6040.6040.6220.0180
603.296220.6330.6410.6240.6330.6550.0223
703.398020.6190.6310.6420.6310.6420.0113
803.506310.6240.6090.6130.6150.6270.0117
903.621730.6270.5970.6030.6090.6150.0060

图4

镍渣—尾砂的堆集密实度实测值与理论值比较"

图5

镍渣—尾砂配比为4∶6时抗压强度试验结果"

图6

镍渣—尾砂配比为5∶5时抗压强度试验结果"

图7

镍渣—尾砂配比为6∶4时抗压强度试验结果"

表7

镍渣混合料浆流动性试验结果"

镍渣与尾砂配比

质量浓度

/%

平均坍落度/mm平均扩展度/mm备注
4∶675279810离析严重
77259670离析严重
79251450
81231320
5∶575280860轻微离析
77273770推荐配比
79270700推荐配比
81260550
83250480
6∶4752911 145离析严重
772891 000离析严重
79277815轻微离析
81272655离析严重
83265650临界状态

图8

重度离析料浆试验效果"

表8

镍渣—全尾砂混合充填料浆的流变参数结果"

镍渣与尾砂配比质量浓度/%屈服应力/Pa塑性黏度/(Pa·s)复相关系数R2
5∶57572.4990.6040.9709
7789.2650.7430.9776
79112.6340.9380.9949
81125.9121.0490.9925
83221.5931.8460.9992

图9

镍渣—全尾砂配比为5∶5时屈服应力、黏度与质量浓度变化曲线"

Chen Dexin, Gao Qian, Ba Duoheng,et al,2017.Research progress of Jinchuan filling cementitious materials and prospects for comprehensive utilization of waste[J].Journal of Fuzhou University(Natural Science Edition),45(4):610-616.
Gao Qian, Wang Yongqian, Ni Wen,et al,2014.Experimental study on the development of a new filling cementing agent using Jinchuan water quenched nickel slag tailings[J].Journal of Geotechnical Engineering,36(8):1498-1506.
Gao Shujie, Ni Wen, Li Keqing,2013.Preparation and hydration mechanism of mine filling materials using water quenched secondary nickel slag [J].Journal of Silicates,41(5):612-619.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,2007. Granulated blast furnace slag powder for use in cement,mortar,and concrete: [S].Beijing:General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,2011. Chemical analysis methods for granulated blast furnace slag: [S].Beijing:General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China.
Guo Lijie, Zhang Lei, Li Wenchen,2020.Research status and prospects of preparation of cementitious materials from nonferrous metallurgical slag[J].Gold Science and Technology,28(5):621-636.
Khamdan C,Kholik,2019.Simulation of precious metals recovery from nickel smelter slag under high-pressure oxidative acid leaching (HPOXAL)[J].Journal of Physics:Conference Series,1295(1):012006.
Li Keqing, Feng Lin, Gao Shujie,2015.Preparation of cementitious materials for nickel slag based mine filling [J].Journal of Engineering Science,37(1):1-6.
Li Wenchen, Guo Lijie, Yang Chao,2020.Study on the preparation of filling cementitious materials from alkaline activated copper nickel water quenched smelting slag [J].China Mining,29 (7):122-127.
Mustika W, Kadir A, Ngii E,et al,2021.Properties of concrete paving blocks made with nickel slags[J].IOP Conference Series:Earth and Environmental Science,622(1):012033.
Peng Peng, Wang Shuang, Li Keqing,2015.Experimental study on deep reduction magnetic separation of nickel residue for iron extraction[C]//Proceedings of the 6th Comprehensive Utilization Technology Seminar of Tailings and Metallurgical Residues and Quzhou Project Investment Matchmaking Conference.Beijing:The Chinese Ceramic Society.
Shi Caixing, Guo Lijie, Li Wenchen,2018.Research and application of lead-zinc smelting slag filling cementitious materials [J].Gold Science and Technology,26(2):160-169.
Suvorova O, Selivanova E, Mikhailova J,et al,2020.Ceramic products from mining and metallurgical waste[J].Applied Sciences,10(10):3515.
Wang C L, Ren Z Z, Huo Z K,et al,2021.Properties and hydration characteristics of mine cemented paste backfill material containing secondary smelting water-granulated nickel slag[J].Alexandria Engineering Journal,60(6):4961-4971.
Wang Z J, Ni W, Li K Q,et al,2011.Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag[J]. International Journal of Minerals,Metallurgy and Materials,18(4): 455-459.
Wen Zhenjiang, Gao Qian, Yang Zhiqiang,et al,2021.Mechanical properties and hydration mechanism of Jinchuan nickel slag filling cementitious material[J].Chinese Journal of Non ferrous Metals,31(4):1074-1083.
Wu Aixiang, Wang Yong, Zhang Minzhe,et al,2021.New progress and prospects of key technologies for underground mining in metal mines [J].Metal Mines,50(1):1-13.
Wu Q S, Wu Y, Tong W,et al,2018.Utilization of nickel slag as raw material in the production of Portland cement for road construction[J]. Construction and Building Materials,193:426-434.
Yin Suhong, Ma Jian, Yan Bo,et al,2019.Characteristics of several different nickel slags and their feasibility in cement and concrete [J].Portland Bulletin,38(7):2268-2273,2280.
Zhang Chao, Hu Yafei, Wang Yanchun,et al,2019.Study on the law of the effect of aggregate stacking density on the strength of filling bodies[J].Mining Research and Development,39(8):96-100.
Zhang Tingting, Zhi Shiwei, Guo Lijie,et al,2020.Research progress on resource utilization of copper nickel smelting slag [J].Gold Science and Technology,28(5):637-645.
Zhou Qi, Xueli Nan, Yi Yuqiang,et al,2010.Preparation of nic-kel slag microcrystalline glass and recycling of iron[J].Jou-rnal of Lanzhou University of Technology,36(5):14-18.
陈得信,高谦,把多恒,等,2017.金川充填胶凝材料研究进展与废弃物综合利用展望[J].福州大学学报(自然科学版),45(4):610-616.
高谦,王永前,倪文,等,2014.利用金川水淬镍渣尾砂开发新型充填胶凝剂试验研究[J].岩土工程学报,36(8):1498-1506.
高术杰,倪文,李克庆,2013.用水淬二次镍渣制备矿山充填材料及其水化机理[J].硅酸盐学报,41(5):612-619.
郭利杰,张雷,李文臣,2020.有色冶金渣制备胶凝材料研究现状与展望[J].黄金科学技术,28(5):621-636.
李克庆,冯琳,高术杰,2015.镍渣基矿井充填用胶凝材料的制备[J].工程科学学报,37(1):1-6.
李文臣,郭利杰,杨超,2020.碱激发铜镍水淬冶炼渣制备充填胶凝材料研究[J].中国矿业,29(7):122-127.
彭朋,王爽,李克庆,2015.镍渣提铁的深度还原—磁选试验研究[C]//第六届尾矿与冶金渣综合利用技术研讨会暨衢州市项目招商对接会论文集.北京:中国硅酸盐学会.
史采星,郭利杰,李文臣,2018.铅锌冶炼渣充填胶凝材料研究及应用[J].黄金科学技术,26(2):160-169.
温震江,高谦,杨志强,等,2021.金川镍渣充填胶凝材料力学性能与水化机理[J].中国有色金属学报,31(4):1074-1083.
吴爱祥,王勇,张敏哲,等,2021.金属矿山地下开采关键技术新进展与展望[J].金属矿山,50(1):1-13.
殷素红,马健,颜波,等,2019.几种不同镍渣的特性及其用于水泥和混凝土中的可行性[J].硅酸盐通报,38(7):2268-2273,2280.
张超,胡亚飞,王延春,等,2019.骨料堆积密实度对充填体强度影响的规律研究[J].矿业研究与开发,39(8):96-100.
张婷婷,智士伟,郭利杰,等,2020.铜镍冶炼渣的资源化利用研究进展[J].黄金科学技术,28(5):637-645.
中华人民共和国国家质量监督检验检疫总局,2011. 粒化高炉矿渣的化学分析方法: [S].北京:中华人民共和国国家质量监督检验检疫总局.
中华人民共和国国家质量监督检验检疫总局,2017. 用于水泥、砂浆和混凝土中的粒化高炉矿渣粉: [S].北京:中华人民共和国国家质量监督检验检疫总局.
周琦,南雪丽,易育强,等,2010.镍渣微晶玻璃制备及铁的回收利用[J].兰州理工大学学报,36(5):14-18.
[1] 杨应宝,伏彦雄,裴英杰,周强,肖庆飞. 易门铜业Φ2.4×3.6 m球磨机磨矿介质配比优化研究[J]. 黄金科学技术, 2023, 31(1): 163-170.
[2] 海龙,程同俊,徐博,赵鑫. 粉煤灰改良铁尾矿膏体充填材料试验研究[J]. 黄金科学技术, 2022, 30(5): 724-732.
[3] 李兆宇,孙伟,张盛友,李金鑫. 全尾砂物理特性对絮凝沉降性能影响规律的研究[J]. 黄金科学技术, 2022, 30(1): 64-71.
[4] 衣成玉,裴英杰,马帅. 焦家金矿磨矿介质配比优化试验研究与应用[J]. 黄金科学技术, 2022, 30(1): 122-130.
[5] 李光,马凤山,郭捷,邹龙,寇永渊. 金川二矿区地应力特征及其对巷道变形破坏的影响研究[J]. 黄金科学技术, 2021, 29(6): 817-825.
[6] 张美道,饶运章,徐文峰,王文涛. 全尾砂膏体充填配比优化正交试验[J]. 黄金科学技术, 2021, 29(5): 740-748.
[7] 赵鑫,海龙,徐博,程同俊. 电厂灰渣制备井下膏体充填材料试验研究[J]. 黄金科学技术, 2021, 29(4): 582-592.
[8] 黄仁东,李哲. 基于正交试验的细尾砂—分级尾砂充填体强度研究[J]. 黄金科学技术, 2021, 29(2): 256-265.
[9] 张婷婷, 智士伟, 郭利杰, 武震林, 韩俊南. 铜镍冶炼渣的资源化利用研究进展[J]. 黄金科学技术, 2020, 28(5): 637-645.
[10] 郭利杰, 张雷, 李文臣. 有色冶金渣制备胶凝材料研究现状与展望[J]. 黄金科学技术, 2020, 28(5): 621-636.
[11] 张婷婷, 周子钰, 郭利杰, 武震林, 韩俊南. 矿物掺合料改性铜镍渣胶凝材料的性能研究[J]. 黄金科学技术, 2020, 28(5): 678-687.
[12] 粟著,张德明,张钦礼. 金矿尾矿胶结充填试验及环境效应研究[J]. 黄金科学技术, 2019, 27(6): 912-919.
[13] 康虔,王运敏,贺严,薛希龙,张楚旋. 固液两相耦合条件下全尾砂连续沉降规律研究[J]. 黄金科学技术, 2019, 27(6): 896-902.
[14] 焦华喆, 靳翔飞, 陈新明, 杨亦轩, 王金星. 全尾砂重力浓密导水通道分布与细观渗流规律[J]. 黄金科学技术, 2019, 27(5): 731-739.
[15] 肖文丰,陈建宏,陈毅,王喜梅. 基于神经网络与遗传算法的多目标充填料浆配比优化[J]. 黄金科学技术, 2019, 27(4): 581-588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[4] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[5] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[6] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .
[7] 刘新会,刘家军,陈彩华. 西秦岭寨上特大型金矿床硫盐矿物特征及其成因意义[J]. J4, 2010, 18(4): 6 -11 .
[8] 张渊, 张洪喜. 山东黄埠岭金矿7号脉地质特征及控矿机理研究[J]. J4, 2010, 18(4): 12 -16 .
[9] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[10] 任广智, 赵玉锁, 肖振, 卿敏, 魏峰, 缪振平. 河北峪耳崖金矿床矿体赋存规律及找矿预测[J]. J4, 2010, 18(4): 27 -32 .