img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (3): 458-469.doi: 10.11872/j.issn.1005-2518.2024.03.029

• 采选技术与矿山管理 • 上一篇    下一篇

三轴压缩下单裂隙位置对复合岩样力学变形与破坏模式的影响

谢志英1(),许可1(),陆逸帆2,肖桃李1,折海成1,3,赵云峰1   

  1. 1.长江大学城市建设学院,湖北 荆州 434023
    2.荆州市城发建设工程集团有限公司,湖北 荆州 434023
    3.水利部水库大坝安全重点实验室,江苏 南京 210024
  • 收稿日期:2024-01-19 修回日期:2024-03-06 出版日期:2024-06-30 发布日期:2024-07-05
  • 通讯作者: 许可 E-mail:597196139@qq.com;202072705@yangtzeu.edu.cn
  • 作者简介:谢志英(1966-),女,湖北天门人,教授级高级工程师,从事矿山压力与巷道支护方面的研究工作。597196139@qq.com
  • 基金资助:
    国家自然科学基金项目“酸雨冻融耦合作用下混凝土灾变破坏的雪崩过程研究”(52204201)

Influence of Single Fissure Position on Mechanical Deformation and Failure Modes of Composite Rock Specimens Under Triaxial Compression

Zhiying XIE1(),Ke XU1(),Yifan LU2,Taoli XIAO1,Haicheng SHE1,3,Yunfeng ZHAO1   

  1. 1.School of Urban Construction, Yangtze University, Jingzhou 434023, Hubei, China
    2.Jingzhou Chengfa Construction Engineering Group Co. , Ltd. , Jingzhou 434023, Hubei, China
    3.Key Laboratory of Reservoir and Dam Safety Ministry of Water Resources, Nanjing 210024, Jiangsu, China
  • Received:2024-01-19 Revised:2024-03-06 Online:2024-06-30 Published:2024-07-05
  • Contact: Ke XU E-mail:597196139@qq.com;202072705@yangtzeu.edu.cn

摘要:

在地下富存裂隙的层状复合岩体中,复杂围压环境和裂隙分布对复合岩体力学性质和损伤破坏具有显著影响。选取由类灰岩和类砂岩组成的含预制单裂隙的复合岩样作为研究对象,通过常规三轴压缩试验,分析不同裂隙位置和围压条件下岩样的力学变形和破坏模式。结果表明:(1)完整复合岩样的强度受砂岩控制,而变形受灰岩限制。(2)随着围压的增加,复合岩样破坏特征由裂隙位置主导转变为由围压主导;复合岩样的体缩受围压的影响,而体胀受裂隙位置的影响。(3)在单轴压缩条件下,裂隙对岩样力学性质的削弱程度最大;当裂隙位于灰岩中时,损伤应力受围压影响最显著,岩样的强度和弹性模量随着裂隙位置的改变(从灰岩、接触面到砂岩)及围压的增加呈现出增加的趋势。(4)灰岩中的裂隙易产生拉伸裂纹,砂岩中的裂隙易产生剪切裂纹;随着围压的增加,复合岩样由拉伸破坏转变为剪切破坏,破坏模式由围压主导。该研究成果对复合岩体工程的安全加固设计具有一定的指导意义。

关键词: 复合岩样, 预制单裂隙, 围压, 裂隙位置, 破坏模式

Abstract:

Composite rocks are widely present in underground geotechnical engineering such as tunnel excavation,mining projects,and oil and gas resource extraction.Composite rocks are formed by the layered accumulation of rocks with disparate properties,and are rich in fissures.The intricate features of these fissures,combined with the distribution of stress,collectively influence the stability of composite rocks,making them prone to disasters such as roof collapse,expansion of surrounding rocks,and significant tunnel deformations.Therefore,investigating the mechanical failure mechanisms of composite rocks under different confining pressures and fissure positions is of paramount importance for effectively preventing disasters in underground engineering construction.Based on the above reasons,this study prepared composite rock samples with pre-existing fissures,conducted triaxial compression tests by varying the fissure positions,and analyzed and summarized the influence of fissure positions and confining pressure on the mechanical behavior and failure modes of composite rock.The main conclusions are as follows:(1)Limestone exhibits the highest strength,while sandstone undergoes the greatest deformation under compression.The mechanical deformation of the intact composite rock sample falls between sandstone and limestone,with its strength controlled by the sandstone portion and deformation restricted by the limestone portion.(2) Under lower confining pressures,the intact rock sample and the one with fissures in limestone exhibit brittle failure,while the one with fissures in the contact zone and sandstone exhibits ductile failure.With the increasing of confining pressure,rock samples generally exhibit ductile failure,and the dominant factor in the failure characteristics shifts from the fissure position to the confining pressure.The volumetric contraction of the rock sample increases with the rise in confining pressure,and the volumetric expansion is minimal when fissures are in sandstone.Volumetric contraction is influenced by confining pressure,while volumetric expansion is influenced by fissure position.(3)In uniaxial compression,unstable crack propagation occurs earliest,and at this point,fissures have the greatest impact on the mechanical properties of the rock sample.In triaxial compression,with a constant fissure position,higher confining pressures result in more stable crack propagation when fissures are in limestone.Simultaneously,the strength and elastic modulus of the rock sample show an increasing trend with the change in fissure position from limestone,through the contact zone,to sandstone.With constant confining pressure,crack propagation is most stable when fissures are in sandstone,and the degradation of the sample is minimal when fissures are in limestone.(4)When fissures are in limestone,tensile cracks dominate,whereas in sandstone,shear cracks predominant.With the increasing of confining pressure,the failure mode of the composite rock sample shifts from tensile failure to shear failure,gradually transitioning from fissure-dominated to confining pressure-dominated failure modes.

Key words: composite rocks, pre-existing single fissure, confining pressures, fissure position, failure modes

中图分类号: 

  • TD315

表1

类岩石材料质量配合比"

类岩石材料水泥石英砂微硅粉铁粉消泡剂减水剂纯净水
类灰岩1.000.800.130.250.0030.0030.30
类砂岩1.000.70--0.0030.0030.30

表2

类岩石和原岩的物理力学参数"

类岩石材料密度/(g·cm-3弹性模量/GPa泊松比抗压强度/MPa抗拉强度/MPa
灰岩2.48~2.8510~230.20~0.3560~1105~10
类灰岩2.6112.520.2472.927.16
砂岩2.10~2.403~150.20~0.2520~684~9
类砂岩2.237.870.2240.696.32

图1

类岩石与原岩的应力—应变曲线"

图2

立方体试样制作加工示意图"

图3

标准型圆柱体岩样制作示意图"

图4

标准型圆柱体试样示意图"

表3

试样编号"

裂隙位置不同围压对应的试样编号
0 MPa5 MPa10 MPa15 MPa
完整岩样(无裂隙)C-0C-5C-10C-15
灰岩FL-0FL-5FL-10FL-15
接触面FI-0FI-5FI-10FI-15
砂岩FS-0FS-5FS-10FS-15

图5

试验设备"

图6

完整岩样应力—应变曲线与破坏模式"

表4

完整岩样力学参数"

岩样峰值应力/MPa弹性模量/GPa峰值应变/%
灰岩72.9212.520.78
复合岩42.848.470.85
砂岩40.697.870.88

图7

不同裂隙位置和围压条件下复合岩样的全应力—应变曲线"

图8

不同裂隙位置和围压条件下复合岩样的损伤应力特性"

图9

不同裂隙位置和围压条件下复合岩样的峰值应力特性"

图10

不同裂隙位置和围压条件下复合岩样的弹性模量"

图11

不同裂隙位置和围压条件下复合岩样的破坏模式"

图12

裂隙位于灰岩部分时复合岩样在不同围压条件下的内部磨损特征"

表5

复合岩样的破坏特征"

裂隙位置不同围压条件下的破坏特征
0 MPa5 MPa10 MPa15 MPa
完整岩样(无裂隙)拉伸破坏拉剪混合破坏拉剪混合偏剪切破坏剪切破坏
灰岩拉伸破坏拉伸破坏拉剪混合偏剪切破坏拉剪混合偏剪切破坏
接触面拉伸破坏拉剪混合破坏拉剪混合偏剪切破坏剪切破坏
砂岩拉伸破坏拉剪混合偏剪切破坏拉剪混合偏剪切破坏剪切破坏
Chen S, Yin D, Jiang N,et al,2019.Mechanical properties of oil shale-coal composite samples[J]. International Journal of Rock Mechanics and Mining Sciences,123(1/2/3/4):104120.
Chen Yan’an, Cui Deshan, Bian Kang,et al,2020.Particle flow analysis on mechanical characteristics of composite rock samples containing coplanar double fractures[J].Safety and Environmental Engineering,27(2):140-148.
He Manchao, Xie Heping, Peng Suping,et al,2005.Study on rock mechanics in deep mining engineering[J].Chinese Journal of Rock Mechanics and Engineering,24(16):2803-2813.
Huang B X, Liu J W,2013.The effect of loading rate on the behavior of samples composed of coal and rock[J].International Journal of Rock Mechanics and Mining Sciences,61:23-30.
Jiang Quan, Feng Xiating, Chen Guoqing,et al,2008.Stability study of large underground caverns under high geostress[J].Chinese Journal of Rock Mechanics and Engineering,27(Supp.2):3768-3768.
Li Chengjie, Xu Ying, Ye Zhouyuan,2020.Energy dissipation and crushing characteristics of coal-rock-like combined body under impact loading[J].Chinese Journal of Geotechnical Engineering,42(5):981-988.
Li Xiaohong, Lu Yiyu, Kang Yong,et al,2007.Rock Mechanics Experiment Simulation Technology[M].Beijing:Science Press.
Li Xin, Song Chongxiao, Yang Zhen,et al,2022.Infrared radiation and energy evolution characteristics of cyclic loading and unloading of composite coal and rock[J].Journal of Safety and Environment,22(4):1812-1820.
Lin Q B, Cao P, Cao R H,et al,2020.Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression[J].Archives of Civil and Mechanical Engineering,20:1-18.
Liu J, Wang E Y, Song D Z,et al,2015.Effect of rock strength on failure mode and mechanical behavior of composite samples[J].Arabian Journal of Geosciences,8(7):4527-4539.
Ma Nianjie, Zhao Xidong, Zhao Zhiqiang,et al,2015.Stability analysis and control technology of mine roadway roof in deep mining[J].Journal of China Coal Society,40(10):2287-2295.
Ma Q, Tan Y L, Liu X S,et al,2021.Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples[J].Journal of Central South University,28(10):3207-3222.
Wang Kai, Zhao Enbiao, Guo Yangyang,et al,2023.Deformation,seepage and energy evolution characteristics of gas-bearing coal-rock under intermediate principal stress[J].Journal of Mining Science and Technology,8(1):74-82.
Wang Qihu, Wang Jie, Ye Yicheng,et al,2020.Effect of single fracture geometric characteristics of composite rock samples on its failure mode and strength[J].Metal Mine,49(2):134-140.
Wang W Q, Ye Y C, Wang Q H,et al,2022.Experimental study on anisotropy of strength,deformation and damage evolution of contact zone composite rock with DIC and AE techniques[J].Rock Mechanics and Rock Engineering,55(2):837-853.
Xia Caichu, Sun Zhongqi,2002.Engineering Rock Mass Joint Mechanics[M].Shanghai:Tongji University Press.
Xiao Changfu, Lin Xin, Wu Gang,et al,1988.The effect of the bond strength between layers on compressive mechanical properties of the composite rock[J].Journal of Chongqing University(Natural Science Edition),(1):125-131.
Yi Ting, Tang Jianxin, Wang Yanlei,2021.Effect of fracture dip angle and number on mechanical properties and failure modes of rock mass[J].Chinese Journal of Underground Space and Engineering,17(1):98-106,134.
Yin Pengfei, Yang Shengqi, Zeng Wei,2015.A simulation study on strength and crack propagation characteristics of layered composite rock with single fissure[J].Journal of Basic Science and Engineering,23(3):608-621.
Yu X, Kemeny J, Tan Y Y,et al,2021.Mechanical properties and fracturing of rock-backfill composite specimens under triaxial compression[J].Construction and Building Materials,304:124577.
Zhang Mei,2010.New Technology of Energy Release and Depressurization Method in Karst Tunnel Through Karst Cave with High Pressurized Water[M].Beijing:Science Press.
Zhu Chuanjie, Ma Cong, Zhou Jingxuan,et al,2021.Mechanical properties and failure characteristics of composite coal and rock mass under dynamic and static loading[J].Journal of China Coal Society,46(Supp.2):817-829.
陈彦安,崔德山,卞康,等,2020.含共面双裂隙复合岩样力学特征的颗粒流分析[J].安全与环境工程,27(2):140-148.
何满潮,谢和平,彭苏萍,等,2005.深部开采岩体力学研究[J].岩石力学与工程学报,24(16):2803-2813.
江权,冯夏庭,陈国庆,等,2008.高地应力条件下大型地下洞室群稳定性综合研究[J].岩石力学与工程学报,27(增2):3768-3768.
李成杰,徐颖,叶洲元,2020.冲击荷载下类煤岩组合体能量耗散与破碎特性分析[J].岩土工程学报,42(5):981-988.
李晓红,卢义玉,康勇,等,2007.岩石力学实验模拟技术[M].北京:科学出版社.
李鑫,宋重霄,杨桢,等,2022.复合煤岩循环加卸荷红外辐射及能量演化特征[J].安全与环境学报,22(4):1812-1820.
马念杰,赵希栋,赵志强,等,2015.深部采动巷道顶板稳定性分析与控制[J].煤炭学报,40(10):2287-2295.
王凯,赵恩彪,郭阳阳,等,2023.中间主应力影响下含瓦斯复合煤岩体变形渗流及能量演化特征研究[J].矿业科学学报,8(1):74-82.
王其虎,王杰,叶义成,等,2020.复合岩样中单裂隙几何特征对其破坏模式及强度的影响[J].金属矿山,49(2):134-140.
夏才初,孙宗颀,2002.工程岩体节理力学[M].上海:同济大学出版社.
肖长富,林新,吴刚,等,1988.层间粘结强度对复合岩石压缩力学性能特性的影响[J].重庆大学学报(自然科学版),(1):125-131.
易婷,唐建新,王艳磊,2021.裂隙倾角及数目对岩体强度和破坏模式的影响[J].地下空间与工程学报,17(1):98-106,134.
殷鹏飞,杨圣奇,曾卫,2015.含单裂隙复合岩层强度与裂纹扩展特征模拟研究[J].应用基础与工程科学学报,23(3):608-621.
张梅,2020.岩溶隧道高压富水充填溶腔释能降压新技术[M].北京:科学出版社.
朱传杰,马聪,周靖轩,等,2021.动静载荷耦合作用下复合煤岩体的力学特性及破坏特征[J].煤炭学报,46(增2):817-829.
[1] 周盛全, 王瑞, 田诺成, 李栋伟. 冲击荷载作用下热处理花岗岩动态力学特性研究[J]. 黄金科学技术, 2022, 30(2): 222-232.
[2] 杜坤,杨颂歌,苏睿,杨成志,王少锋. 不同应力条件下硬岩强度与破裂特性试验研究[J]. 黄金科学技术, 2021, 29(3): 372-381.
[3] 戴兵, 单启伟, 罗鑫尧, 薛永明. 含孔洞岩石在静应力下的循环冲击试验研究[J]. 黄金科学技术, 2020, 28(4): 531-540.
[4] 陈昊然,曹平,冉龙威. 含齿形裂隙类岩石材料单轴压缩试验研究[J]. 黄金科学技术, 2019, 27(3): 398-405.
[5] 杨世兴,付玉华,占飞. 围压与料浆浓度对尾砂充填体峰后损伤演化研究[J]. 黄金科学技术, 2019, 27(1): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[2] 曲晖, 史瑞民. 黑龙江东安金矿成矿的构造条件分析[J]. J4, 2007, 15(1): 23 -25 .
[3] 闫文强,杨凤喜. 试论一撮毛岩体对五道岭钼矿的成矿作用[J]. J4, 2008, 16(3): 37 -39 .
[4] 衣存昌, 臧恩光. 黑龙江老柞山金矿成矿规律及深部找矿探讨[J]. J4, 2010, 18(4): 58 -61 .
[5] 胡琴霞, 陈凯, 陈超, 张圣潇. 广东那程银金矿床地质特征及成矿规律浅析[J]. J4, 2011, 19(1): 16 -20 .
[6] 路仁江, 刘鹏金, 娄伟华. 高水固结充填采矿法工艺创新与应用[J]. J4, 2011, 19(1): 51 -54 .
[7] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[8] 杨小斌, 李永娜, 冶玉娟. 青海省果洛龙洼金矿床矿石及矿物特征研究[J]. J4, 2007, 15(1): 14 -18 .
[9] 路耀祖. 龙特锑金矿点地质特征及其找矿前景[J]. J4, 2008, 16(3): 13 -16 .
[10] 唐俊智 ,王江波 ,林洪勇. 人工假底假巷在中薄脉金矿中的应用[J]. J4, 2008, 16(3): 45 -48 .