img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (3): 470-480.doi: 10.11872/j.issn.1005-2518.2024.03.054

• 采选技术与矿山管理 • 上一篇    下一篇

微波照射下大理岩孔隙结构变化特征及能量演化规律

李想1(),杨建国2,杨博2,李杰林1(),周科平1   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.天河道云(北京)科技有限公司,北京 100176
  • 收稿日期:2024-02-24 修回日期:2024-04-01 出版日期:2024-06-30 发布日期:2024-07-05
  • 通讯作者: 李杰林 E-mail:1023492778@qq.com;lijielin@163.com
  • 作者简介:李想(1999-),男,河北唐山人,硕士研究生,从事金属矿山开采及矿山岩石力学等研究工作。1023492778@qq.com
  • 基金资助:
    中南大学研究生校企联合创新项目“采空区三维激光扫描精细探测及安全评价研究”(2022XQLH104);金属矿山安全与健康国家重点实验室开放课题“深部高应力巷道围岩结构面与危险块体自动识别方法研究”(2020-JSKS-SYS-06)

Variation Characteristics of Pore Structure and Energy Evolution Law of Marble Under Microwave Irradiation

Xiang LI1(),Jianguo YANG2,Bo YANG2,Jielin LI1(),Keping ZHOU1   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.Tianhe Daoyun (Beijing) Technology Co. , Ltd. , Beijing 100176, China
  • Received:2024-02-24 Revised:2024-04-01 Online:2024-06-30 Published:2024-07-05
  • Contact: Jielin LI E-mail:1023492778@qq.com;lijielin@163.com

摘要:

为研究大理岩在不同微波照射功率和辐射时间下的孔隙结构变化及强度劣化特征,基于核磁共振技术分析不同微波照射功率和辐射时间下大理岩的孔隙结构演化特征,并通过声波和岩石力学强度等测试工作进行验证。同时,建立微波照射下岩石的损伤劣化模型,并基于能量耗散理论分析了大理岩的能量演化过程。结果表明:随着微波照射功率和辐射时间的增加,大理岩的质量、硬度、波速、峰值强度和弹性模量等参数均呈现不同程度的下降,孔隙度升高;随着微波照射功率和辐射时间的增加,试样内部能量发生转换,耗散能能量占比不断增加,弹性能能量占比不断减少。研究结果揭示了微波照射下大理岩内部孔隙结构变化及能量演化规律,对其他类型岩石损伤演化机理具有一定的借鉴意义。

关键词: 微波照射功率, 微波辐射时间, 孔隙结构, 损伤模型, 能量演化, 岩石损伤

Abstract:

In order to study the pore structure change and strength deterioration characteristics of marble under different microwave irradiation power and time,the pore structure evolution characteristics of marble under different microwave power and time were analyzed based on nuclear magnetic resonance technology.With the increase of microwave irradiation power or microwave radiation time,the quality,hardness,wave velocity,peak strength and elastic modulus of marble all show different degrees of decline,and the porosity of the rock increases,and the degree of fragmentation is obvious.They are verified by tests such as acoustic waves and rock mechanical strength.At the same time,the damage degradation model of microwave radiation was established based on NMR,and the damage model had good effect.The damage model can further reflect the damage degree of three kinds of damage variables such as porosity under microwave radiation,and can provide reference for the study of damage and deterioration of similar rocks.In addition,the energy evolution process of marble was analyzed based on the energy dissipation theory.With the increase of microwave power or irradiation time,the release amount of elastic energy becomes less and less,and the elastic deformation changes to plastic deformation.With the increase of microwave radiation time from 60 s to 300 s,the total energy and elastic energy both show a linear downward trend,while the dissipated energy showes a linear upward trend,that is the total energy decreased from 350.93 kJ/m3 to 299.07 kJ/m3,with a decrease of 14.78%.The elastic energy decreases from 311.68 kJ/m3 to 240.49 kJ/m3,with a decrease of 22.84%.The dissipated energy increases from 39.25 kJ/m3 to 58.58 kJ/m3,with an increase of 49.25%.When the microwave irradiation power increased from 1 kW to 3 kW,the total energy and elastic energy also show a linear decline trend,and the dissipative energy showes a linear increase trend,that is the total energy decreases from 334.58 kJ /m3 to 289.70 kJ /m3,with a decrease of 13.41%.The elastic energy decreases from 287.39 kJ/m3 to 223.07 kJ/m3,with a decrease of 22.38%.The dissipated energy increases from 47.19 kJ/m3 to 66.70 kJ/m3,with an increase of 41.34%.The results show that the quality,hardness,wave velocity,peak strength and elastic modulus of marble decrease and the porosity increases with the increase of microwave irradiation power and time.With the increase of microwave irradiation power and time,the internal energy of the sample is converted,the proportion of dissipative energy is increased,and the proportion of elastic energy is decreased.The research results reveal the changes of pore structure and energy evolution of marble under microwave irradiation,which also has certain reference significance for the damage evolution mechanism of other types of rock.

Key words: microwave irradiation power, microwave radiation time, pore structure, damage model, energy evolution, rock damage

中图分类号: 

  • TU45

图1

试验系统及流程示意图"

图2

不同辐射时间和照射功率下微波作用大理岩的应力—应变曲线"

表1

微波照射前后大理岩基本物理参数"

试样编号微波作用条件作用前平均质量/g作用后平均质量/g作用前平均硬度作用后平均硬度
D1~D30 kW,0 s508.33508.2944
D4~D60 kW,60 s508.25508.1044
D7~D90 kW,180 s509.01508.8444
D10~D120 kW,300 s508.44508.1644
D13~D151 kW,0 s508.26508.1644
D16~D181 kW,60 s507.99507.8244
D19~D211 kW,180 s508.65508.3644
D22~D241 kW,300 s509.27508.8843
D25~D272 kW,0 s509.06508.9744
D28~D302 kW,60 s508.94508.6344
D31~D332 kW,180 s508.80508.3243
D34~D362 kW,300 s508.02507.8043
D37~D393 kW,0 s509.11508.3044
D40~D423 kW,60 s507.92507.2443
D43~D453 kW,180 s508.63507.8943
D46~D483 kW,300 s508.71508.0643

图3

不同辐射时间和照射功率下微波作用大理岩的波速变化"

图4

不同辐射时间和照射功率下微波作用大理岩的峰值强度变化"

图5

微波辐射时间为180 s条件下大理岩的累积孔隙度变化"

图6

微波照射功率为2 kW条件下大理岩孔隙度随辐射时间的变化"

图7

微波辐射时间为180 s条件下大理岩孔隙度随照射功率的变化"

图8

微波照射功率为1 kW条件下大理岩能量随辐射时间的变化"

图9

微波辐射时间为180 s条件下大理岩能量随照射功率的变化"

图10

大理岩试样内部能量与微波辐射时间和照射功率的关系"

图11

不同辐射时间和照射功率条件下损伤变量与微波作用的关系"

图12

大理岩裂纹扩展变化"

Dai Jun, Wang Yuliang, Li Tao,2020a.Experimental study on crack propagation law of granite by microwave irradiation[J].Coal Engineering,52(6):130-133.
Dai Jun, Yun Feifei, Xu Shuilin,et al,2020b.Experimental study on damage mechanism of basalt by microwave irradiation[J].Science Technology and Engineering,20(7):2614-2618.
Feng Chenchen, Li Ao, Wang Zhiliang,et al,2022.A study of mineral compositions and micro-structure characteristics for the Jinping marble[J].Hydrogeology and Engineering Geology,49(6):90-96.
Gao Feng, Shao Yan, Xiong Xin,et al,2020. Rising characteristics of internal and external temperatures of rock specimens under different microwave irradiation modes[J].Chinese Journal of Geotechnical Engineering,42(4):650-657.
Hassani F, Nekoovaght P M, Gharib N,et al,2016.The influence of microwave irradiation on rocks for microwave-assisted underground excavationet[J].Journal of Rock Mechanics and Geotechnical Engineering,8(1):1-15.
Hu Biwei, Yin Tubing, Li Xibing,2020.Experimental study on mechanical impact breaking rock with microwave radiation[J].Gold Science and Technology,28(4):521-530.
Li Jielin,2012.Experiment Study on Deterioration Mechanism of Rock Under the Conditions of Freezing-Thawing Cycles in Cold Regions Based on NMR Technology[D].Changsha:Central South University.
Li Qiang,2022. Study on Dynamic and Static Mechanical Properties and Fracture Mechanism of Hard Rock Under Microwave Radiation[D].Changsha:Central South University.
Li Shuaiyuan, Lu Gaoming, Hong Kairong,et al,2023.Analysis on rock dielectric properties and heating properties after microwave heating[J].Chinese Journal of Underground Space and Engineering,19(5):1489-1496.
Li Xibing, Zhou Zilong, Wang Weihua,2010.The status and prospect of development in rock fragmentation engineering[C]// Report on Advances in Rock Mechanics and Rock Engineering.Beijing:Chinese Science and Technology Press.
Liu Chaoyin, Lu Gaoming, Zhou Jianjun,et al,2023.Heating and fracturing characteristics of rocks under microwave irradiation[J].Tunnel Construction,43(8):1348-1359.
Liu J J, Xie J, Yang B G,et al,2023.Experimental study on the damage characteristics and acoustic properties of red sandstone with different water contents under microwave radiation[J].Materials,16(3):979.
Liu Zhou,2022.Research on Rock-breaking Drilling Tools Based on the Principle of Microwave-assisted Mechanical Rock-Breaking[D].Changsha:Changsha Institute of Mining Research Co.,Ltd.
Lu Gaoming, Li Yuanhui, Ferri H,et al,2016.Review of theoretical and experimental studies on mechanical rock fragmentationusing microwave-assisted approach[J].Chinese Journal of Geotechnical Engineering,38(8):1497-1506.
Qiao Lan, Hao Jiawang, Li Zhanjin,et al,2021.Research on the method of hard rock cracking based on microwave heating technology[J].Journal of China Coal Society,46(Supp.1):241-252.
Tang M Y, Gao M Z, Li S W,et al,2023.Failure behavior and energy evolution characteristics of deep roadway sandstone under different microwave irradiation modes[J].Journal of Central South University,30(1):214-226.
Wang Pin,2022. Study on the Dynamic Behavior and Crushing Mechanism of Water-bearing Sandstone Under Microwave Irradiation[D].Changsha:Central South University.
Wang Shaofeng, Sun Licheng, Zhou Zilong,et al,2022. Development and prospect of non-blasting rock breakage theory and technology[J].The Chinese Journal of Nonferrous Metals,32(12):3883-3912.
Yao H Y, Yao J L,2023.Strength degradation and fracture mechanism of sandstone under microwave irradiation[J].Geotechnical and Geological Engineering,41(3):2201-2209.
Yin T B, Jin F Y, Li Q,et al,2022. Effects of microwave radiation on dynamic compressive properties of basalt[J]. Transactions of Nonferrous Metals Society of China,32(10):3388-3403.
Zhang Min,2022. Experimental Study on Damage Characteristics of Granite Under Microwave Cyclic Irradiation[D].Xi’an:Xi’an University of Science and Technology.
Zhang Zhiqiang, Li Huachen, Chen Fangfang,et al,2023.Influence law and mechanism of strong wave-absorbing minerals on microwave-assisted rock-breaking effect[J].Tunnel Construction,43(8):1308-1315.
Zhou Keping, Xue Ke, Liu Taoying,2020.Pore structure evolution and strength degradation of sandstone after microwave treatment[J].Mining and Metallurgical Engineering,40(2):6-11.
戴俊,王羽亮,李涛,2020a.微波照射后花岗岩裂纹扩展规律试验研究[J].煤炭工程,52(6):130-133.
戴俊,贠菲菲,徐水林,等,2020b.微波照射后玄武岩损伤机理试验研究[J].科学技术与工程,20(7):2614-2618.
封陈晨,李傲,王志亮,等,2022.锦屏大理岩单轴压缩过程中的微结构演化[J].水文地质工程地质,49(6):90-96.
高峰,邵焱,熊信,等,2020.不同微波照射方式下岩石试样的内外升温特征试验[J].岩土工程学报,42(4):650-657.
胡毕伟,尹土兵,李夕兵,2020.微波辐射辅助机械冲击破碎岩石动力学试验研究[J].黄金科学技术,28(4):521-530.
李杰林,2012.基于核磁共振技术的寒区岩石冻融损伤机理试验研究[D].长沙:中南大学.
李樯,2022.微波辐射下硬岩动静态力学特性与破裂机理研究[D].长沙:中南大学.
李帅远,卢高明,洪开荣,等,2023.岩石介电特性及微波加热升温规律分析[J].地下空间与工程学报,19(5):1489-1496.
李夕兵,周子龙,王卫华,2010.岩石破碎工程发展现状与展望[C]//2009—2010岩石力学与岩石工程学科发展报告.北京:中国科学技术出版社.
刘超尹,卢高明,周建军,等,2023.微波照射下岩石的升温与破碎特性研究[J].隧道建设(中英文),43(8):1348-1359.
刘洲,2022. 基于微波辅助机械破岩原理的破岩钻具研究[D].长沙:长沙矿山研究院有限责任公司.
卢高明,李元辉, Ferri H,2016.微波辅助机械破岩试验和理论研究进展[J].岩土工程学报,38(8):1497-1506.
乔兰,郝家旺,李占金,等,2021.基于微波加热技术的硬岩破裂方法探究[J].煤炭学报,46(增1):241-252.
王品,2022. 微波照射下含水砂岩的动力学行为及破碎机理研究[D].长沙:中南大学.
王少锋,孙立成,周子龙,等,2022.非爆破岩理论和技术发展与展望[J].中国有色金属学报,32(12):3883-3912.
张敏,2022.微波循环照射下花岗岩损伤特性试验研究[D].西安:西安科技大学.
张志强,李铧辰,陈方方,等,2023.强吸波矿物对微波辅助破岩效果影响规律及机制研究[J].隧道建设,43(8):1308-1315.
周科平,薛轲,刘涛影,2020.微波作用下砂岩孔隙结构演化及强度劣化的试验研究[J].矿冶工程,40(2):6-11.
[1] 肖峰, 曹平, 刘智振, 张子洋. 不同应力上限和加载速率下的黄砂岩疲劳特性研究[J]. 黄金科学技术, 2022, 30(2): 233-242.
[2] 卓毓龙,王晓军,曹世荣,邓书强,李永欣,韩建文 . 渗流作用下稀土矿孔隙结构与强度弱化关系研究[J]. 黄金科学技术, 2017, 25(5): 101-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[2] 迟继松, 牌洪坤, 亓传铎, 王虎, 秦香伟, 李文玉. 伴有充填体矿石选矿方法的研究与应用[J]. J4, 2010, 18(4): 68 -70 .
[3] 杨晓鸿. 贡果亚陇地区金锑矿成矿前景及其找矿意义[J]. J4, 2010, 18(6): 38 -41 .
[4] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[5] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[6] 吴富强, 梁胜跃. 云南东川地区播卡金矿成矿规律研究[J]. J4, 2011, 19(1): 1 -5 .
[7] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[8] 原冬成, 徐小凤. 山东曹家埠金矿床的成矿机理与找矿前景[J]. J4, 2010, 18(4): 47 -49 .
[9] 陆树林, 苏建华. 顶吹烟化法在回收铟中的应用[J]. J4, 2010, 18(4): 71 -74 .
[10] 白复锌, 王善功, 安智海. 地下矿山开采三维可视化系统在鑫汇金矿的应用[J]. J4, 2011, 19(1): 55 -57 .