img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (3): 481-490.doi: 10.11872/j.issn.1005-2518.2024.03.056

• 采选技术与矿山管理 • 上一篇    下一篇

动静复合拉拔作用下锚杆结构的破坏机制研究

张玉1,2(),刘晓敏2,石怡安2,陈铁林3,王展魁2,陈文海2,孙加奇4,安平生1   

  1. 1.中建六局水利水电建设集团有限公司技术中心,天津 300350
    2.中国建筑第六工程局有限公司工程技术研究院,天津 300171
    3.北京交通大学城市地下工程教育部重点实验室,北京 100044
    4.华侨大学土木工程学院,福建 厦门 361021
  • 收稿日期:2024-02-27 修回日期:2024-04-19 出版日期:2024-06-30 发布日期:2024-07-05
  • 作者简介:张玉(1987-),男,河南南阳人,博士,高级工程师,从事水利水电工程技术设计和科技研发工作。yuzhangcscec@163.com
  • 基金资助:
    中建六局科技研发计划资助课题“复杂环境条件下输水隧洞爆破施工关键技术研究”(CSCEC6B-2020-Z-12);“输水隧洞软弱围岩突发坍塌支护设计和充填注浆应急处置技术研究”(CSCEC6B-2021-Z-21);国家自然科学基金项目“爆破震动诱发深部巷道围岩时效破坏机制与损伤模型”(51974136)

Damage Mechanism of Anchor Bolt Structure Under Dynamic and Static Pull-out Loads

Yu ZHANG1,2(),Xiaomin LIU2,Yi’an SHI2,Tielin CHEN3,Zhankui WANG2,Wenhai CHEN2,Jiaqi SUN4,Pingsheng AN1   

  1. 1.Center of Engineering Technology, China Construction Sixth Engineering Bureau Hydropower Construction Co. , Ltd. , Tianjin 300350, China
    2.Institute of Engineering Technology, China Construction Sixth Engineering Bureau Co. , Ltd. , Tianjin 300171, China
    3.Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
    4.College of Civil Engineering, Huaqiao University, Xiamen 361021, Fujian, China
  • Received:2024-02-27 Revised:2024-04-19 Online:2024-06-30 Published:2024-07-05

摘要:

为研究锚杆结构在动静复合拉拔作用下的破坏机制,基于锚固剂的弹塑性损伤本构模型和锚固界面黏结滑移模型,引入参数“静力比”和变幅正弦式动荷载模型,建立了锚杆结构的数值计算模型。首先以锚杆加载端的荷载—位移曲线为研究对象,通过室内试验进行了模型验证。然后对不同界面强度的多组锚杆结构在复合拉拔作用下的破坏过程、破坏模式和破坏特征等展开了研究,同时对参数静力比的影响进行了分析。结果表明:(1)受锚固界面强度的影响,锚杆结构主要包括:单一破坏模式(锚固界面滑移脱黏)、三段复合破坏模式(锚固剂斜开裂—水平开裂—界面滑移脱黏)和两段复合破坏模式(锚固剂斜开裂—水平开裂)。(2)锚固界面强度较小时,锚杆沿锚固界面完全脱黏。随着界面强度的增大,锚固剂斜向开裂缝倾角越小,斜向开裂区范围越大,但尚未延伸至锚固界面。(3)静力比在70%以下时,锚杆结构的承载力随静力比的提高而逐渐增加,反之则逐渐降低。锚杆结构的极限位移和动载循环次数均随静力比的提高而逐渐降低。(4)复合拉拔作用下锚杆结构的峰值荷载低于其在静力时的值,且峰后承载力下降更为明显。工程应用中,建议增加锚固界面和锚固剂强度,适当降低静力比,减弱动力冲击荷载的作用。

关键词: 隧洞, 锚杆结构, 复合拉拔, 破坏机制, 界面强度, 静力比

Abstract:

Research on damage mechanism of anchor bolt structure under dynamic and static pull-out is very important to the design and construction,the numerical calculation model was established based on elastoplastic damage model of anchorage agent and bond-slip model of anchorage interface,and parameter “static ratio” and sinusoidal dynamic load model with variable amplitudes were also introduced.The numerical model was verified by laboratory test firstly taking deformation curve of anchor bolt as example,then the damage mechanisms of anchor bolt structures with different interface strengths under composite loads were studied,which includes the damage process,mode and characteristics,and the influence of static ratio was also analyzed simultaneously.Results show that three damage modes of anchor bolt structure are included under influence of anchorage interface strength,namely single damage mode(anchorage interface sliding),three phases damage mode(oblique&horizontal cracks of anchorage agent and interface sliding),two phases damage mode(oblique and horizontal cracks of anchorage agent).Anchor bolt slides with the anchorage interface when the interface strength is small,while the oblique crack of anchorage agent generates with the increase of interface strength,and the dip angle becomes smaller,the oblique crack zone becomes larger,while the oblique crack doesn’t extend to anchorage interface.Bearing capacity of anchor bolt structure increases with the increase of static ratio when it’s less than 70%,while it decreases gradually on the contrary.Ultimate displacement of anchor bolt structure and cycle time of dynamic load decrease with the increase of static ratio.Peak load of anchor bolt structure under composite loads is less than the static condition,and the decrease is apparent of post-peak bearing capacity.In engineering application,strength increases of anchorage interface and agent are suggested,and decrease of static ratio as well,especially the reduction of dynamic impact load.

Key words: tunnel, anchor bolt structure, composite pull-out, damage mechanism, interface strength, static ratio

中图分类号: 

  • TV554

图1

界面黏聚力模型示意图"

图2

锚杆结构的计算模型"

图3

复合荷载作用"

图4

锚杆结构拉拔试验"

图5

物理试验和数值计算结果"

表1

试验参数"

参数数值参数数值
锚杆直径/mm32锚固剂单轴抗压强度/MPa30
锚杆长度/mm1 000钢套筒外径/mm108
锚杆屈服强度/MPa380钢套筒内径/mm98
锚杆极限抗拉强度/MPa560界面强度/MPa3.4
锚杆弹性模量/GPa220动载频率/Hz0.2
锚杆泊松比0.25静力比/%20

图6

锚杆结构的破坏过程"

图7

不同破坏模式下锚杆结构受力示意图"

图8

不同破坏模式下锚杆结构剪力传递示意图"

图9

不同静力比下锚杆加载端荷载—位移曲线"

图10

静力和复合拉拔作用下锚杆的荷载—位移曲线"

Chen Shihai, Gong Jiachen, Hu Shuaiwei,2020.Model test study on dynamic response characteristics of host rockmass and supporting bolt under blasting load[J].Rock and Soil Mechanics,41(12):3910-3918.
Duan Jian, Yan Zhixin,2014.Natural frequency and parameter influence of slope anchorage system[J].Chinese Journal of Geotechnical Engineering,36(6):1051-1056.
Ivanovic A, Neilson R D,2008.Influence of geometry and material properties on the axial vibration of a rock bolt[J].International Journal of Rock Mechanics and Mining Sciences,45(6):941-951.
Li C C,2016.Analysis of inflatable rock bolts[J].Rock Mechanics and Rock Engineering,49(1):273-289.
Li Xianglong,Yang Changhui,Wang Jianguo, et al,2022 Parameter optimization of presplitting blasting based on model test[J].Chinese Journal of High Pressure Physics,36(2),190-196.
Li Yuanhai, Liu Dezhu, Yang Shuo,et al,2021.Experimental investigation on surrounding rock stress and deformation rule of TBM tunneling in deep mixed strata[J].Rock and Soil Mechanics,42(7):1783-1793.
Lu Yiqiang, Li Guang,2022.Study on calculation method of shield length and thrust of TBM in deep high stress tunnel[J].Chinese Journal of Underground Space and Engineering,18(2):577-585.
Lubliner J, Oliver J, Oller S,et al,1989.A plastic-damage model for concrete[J].International Journal of Solids and Structures,25(3):299-326.
Park R, Paulay T,1975.Reinforced Concrete Structure[M].New York:John Wiley&Sons.
Ren F F, Yang Z J, Chen J F,et al,2010.An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond-slip model[J].Construction and Building Materials,24(3):361-370.
Shcherbakov R, Turcotte D L,2003.Damage and self-similarity in fracture[J].Theoretical and Applied Fracture Mechanics,39(3):245-258.
Tannant D D, Brummer R K, Yi X,1995.Rockbolt behaviour under dynamic loading:Field tests and modelling[J].International Journal of Rock Mechanics and Mining Sciences,32(6):537-550.
Wang Guangyong, Cao Ansheng, Yu Rui,et al,2020.Dynamic response of anchorage chamber under simultaneous explosion load from top and side of arch[J].Chinese Journal of High Pressure Physics,34(2):118-125.
Wang Yang,2018.Field Pullout Tests of Basalt Fiber-Reinforced Polymer Ground Anchor[D].Chengdu:Southwest Jiaotong University.
Yang Zhao, Qiao Chunsheng, Chen Song,2020.Shear stiffness and damage mechanics model of FRP bar bolt in pull-out test[J].Mechanics in Engineering,42(6):758-765.
Zhang Yu, Wang Wenji, Sun Jiaqi,et al,2023.Fracture performances of bedding structure slate under dynamic loading[J].Gold Science and Technology,31(5):803-810.
Zhu Bin, Zhou Chuanbo, Jiang Nan,2023.Dynamic response characteristics and safety control of mortar bolts under the action of tunnel blasting excavation[J].Journal of Vibration Engineering,36(1):235-246.
陈士海,宫嘉辰,胡帅伟,2020.爆破荷载下围岩及支护锚杆动力响应特征模型试验研究[J].岩土力学,41(12):3910-3918.
段建,言志信,2014.边坡锚杆锚固系统固有频率及其参数影响分析[J].岩土工程学报,36(6):1051-1056.
李祥龙,杨长辉,王建国,等,2022.基于模型试验的预裂孔爆破参数优选[J].高压物理学报,36(2):190-196.
李元海,刘德柱,杨硕,等,2021.深部复合地层TBM隧道围岩应力与变形规律模型试验研究[J].岩土力学,42(7):1783-1793.
鲁义强,李光,2022.深部高应力隧道TBM护盾长度和推力计算方法研究[J].地下空间与工程学报,18(2):577-585.
王光勇,曹安生,余锐,等,2020.顶爆和拱腰侧爆同时作用下锚固洞室的动态响应[J].高压物理学报,34(2):118-125.
王洋,2018.BFRP砂浆锚杆锚固机理现场试验研究[D].成都:西南交通大学.
杨钊,乔春生,陈松,2020.FRP筋锚杆拉拔试验剪切刚度变化及损伤力学模型[J].力学与实践,42(6):758-765.
张玉,王文己,孙加奇,等,2023.层理结构板岩动态断裂特性[J].黄金科学技术,31(5):803-810.
朱斌,周传波,蒋楠,2023.隧道爆破开挖作用下砂浆锚杆动力响应特征及安全控制研究[J].振动工程学报,36(1):235-246.
[1] 贡力,陆丽丽,靳春玲,梁栋,周汉国,谢平. 基于正态隶属度—属性区间识别模型的岩爆倾向等级预测[J]. 黄金科学技术, 2022, 30(3): 404-413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!