img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (3): 491-500.doi: 10.11872/j.issn.1005-2518.2024.03.143

• 采选技术与矿山管理 • 上一篇    下一篇

露天边坡体爆破振动特性研究

李启月(),肖宇航(),魏快快,徐恒阳   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2023-10-11 修回日期:2024-03-19 出版日期:2024-06-30 发布日期:2024-07-05
  • 通讯作者: 肖宇航 E-mail:qyli@csu.edu.cn;2374772628@qq.com
  • 作者简介:李启月(1968-),男,湖南衡阳人,教授,博士生导师,从事岩土工程爆破方面的教学与研究工作。qyli@csu.edu.cn
  • 基金资助:
    新疆维吾尔自治区重大科技专项“特长公路隧道机械化安全快速施工技术研究”(2018A03003)

Characterization of Blasting Vibration in Open Slopes

Qiyue LI(),Yuhang XIAO(),Kuaikuai WEI,Hengyang XU   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China.
  • Received:2023-10-11 Revised:2024-03-19 Online:2024-06-30 Published:2024-07-05
  • Contact: Yuhang XIAO E-mail:qyli@csu.edu.cn;2374772628@qq.com

摘要:

针对洪山露天边坡体爆破振动响应问题,结合引入高程差H的二元回归爆破振动速度衰减模型,开展了实测爆破振速峰值(PPV)分析和爆破振速衰减规律预测,分析了露天边坡体爆破振动特性。结果表明:在振速峰值方面,自由面数量越多,PPV越小,其中,单自由面条件下的PPV远大于双自由面和三自由面条件下的PPVH相同时,正高程条件下的PPV大于负高程下的PPV;露天边坡体存在明显的爆破振动高程放大效应,放大系数随H的增大先增大后减小,随水平爆源距的增大而减小。在振速衰减规律方面,高程差对切向方向的速度影响较大,高程效应明显;自由面数量越多,爆破振动速度衰减曲面越平缓;引入高程差的二元回归爆破振速衰减模型比传统一元萨氏回归模型更能有效预测爆破振速衰减规律,相对平均误差为12.3%~15.4%,其中单自由面矢量和的相对平均误差仅为9.5%。

关键词: 露天边坡体, 振动特性, 高程效应, 自由面, 衰减规律, 萨道夫斯基公式

Abstract:

To address the blasting vibration response of the open slope in Hongshan mountain,ombined with a binary regression blasting vibration velocity attenuation model with elevation H is introduced,an analysis of the measured peak blast vibration velocity(PPV) and the prediction of the blasting vibration velocity attenuation law were carried out,and the blasting vibration characteristics of the open slope was analyzed. The results show that the more the number of free-faces,the smaller the PPV. The PPV of single-free surface is much larger than that of double and triple free surfaces. When the elevation difference H is the same,the PPV of positive elevation is larger than that of negative elevation. There is obvious elevation amplification effect of blasting vibration in the open slope,and the amplification coefficient increases first and then decreases with the increase of H,and decreases with the increase of horizontal detonation center distances. In terms of vibration velocity attenuation law,H has a greater impact on the tangential direction of the velocity,the elevation effect is obvious. The more the number of free-surface,the smoother the blasting vibration velocity attenuation surface. The introduction of the elevation of H binary regression blasting velocity attenuation model is more effective than the traditional Sadowski formula regression model in predicting blasting vibration velocity attenuation law. The relative average errors are 12.3%~15.4%,of which the relative average error of the combined velocities of single-free surface is only 9.5%.

Key words: open slope, vibration characteristics, elevation effect, free surface, attenuation law, Sadowski formula

中图分类号: 

  • TD235

图1

洪山与洪源小区卫星平面图注:Ⅰ~Ⅵ-距爆源最近的6栋建筑前监测点序号"

图2

洪山高边坡典型横断面(A-A?)"

表1

爆破参数"

参数数值参数数值
孔径/mm40排距/m1.25
药径/mm32单耗/(kg·m-30.5
孔深/m2.5单孔药卷数/卷3~7
孔距/m1.5单孔药量/kg0.9~2.1

图3

逐孔起爆网络示意图"

图4

爆破振动监测仪分布示意图"

表2

爆破振动监测数据"

数据编号高程差H/m自由面个数N爆源距R/m最大单响药量Q/kg质点峰值振动速度幅值/(cm·s-1
水平切向V1垂向V2水平径向V3矢量和V
ns-11-121501.80.5030.7020.4061.214
ns-42-61551.80.6750.9720.3750.524
ns-51-21551.80.5220.6320.3560.862
nd-11-132551.80.1470.5470.1890.806
nd-21-152551.80.1560.2880.1260.217
nd-42-42351.20.6720.5540.4270.652
nd-51-102351.20.6020.6910.6270.587
nd-62-142551.80.1870.2920.2470.324
nd-82-62551.80.1150.1150.1030.285
nt-21-33351.20.2700.3840.2570.308
nt-51-63351.20.3690.4730.3150.287
ps-1141452.10.8571.5181.0551.840
ps-4211551.80.4551.0230.7741.112
ps-52101452.10.8732.0261.1562.061
ps-62131452.10.8621.3180.7591.580
pd-1132351.20.5170.8520.7411.083
pd-2132451.50.3480.5500.4210.603
pd-5122452.10.3270.5360.3370.527
pd-6162452.10.2650.3850.3150.464
pt-1223500.90.2460.4400.2460.476
pt-2163451.50.2650.3350.3150.380
pt-31103301.20.8651.0020.8531.223
pt-32103601.20.2130.660.1810.662
pt-5293601.20.1860.440.1840.451

图5

不同单段药量和爆源距条件下PPV分布折线图"

图6

不同水平爆源距条件下放大系数随高程变化折线图"

图7

3个方向及合速度的一元线性回归散点及拟合直线图"

表3

3个方向及合速度的一元爆破振速衰减模型"

方向爆破振速衰减公式Ra 2
水平径向V径向=174.74(Q3/R)1.640.58
垂向V垂向=160.14Q3/R1.520.47
水平切向V切向=137.63Q3/R1.570.54
矢量和V矢量=160.07Q3/R1.470.47

图8

单自由面3个方向和合速度的二元线性回归散点及拟合曲面图"

表4

3个方向和合速度的二元爆破振速衰减模型"

自由面数方向场地系数K衰减系数α影响系数β爆破振速衰减公式Ra2
单自由面径向212.9381.5380.028V径向=212.938(Q1/3/R)1.538H/R0.0280.920
垂向382.2211.586-0.036V垂向=382.221(Q1/3/R)1.586H/R-0.0360.897
切向366.1341.792-0.144V切向=366.134(Q1/3/R)1.792H/R-0.1440.899
矢量和218.7651.3630.031V矢量=218.765(Q1/3/R)1.363H/R0.0310.947
双自由面径向139.3521.6420.001V径向=139.352(Q1/3/R)1.642H/R0.0010.814
垂向40.8541.300-0.069V垂向=40.854(Q1/3/R)1.300H/R-0.0690.827
切向40.9771.301-0.072V切向=40.977(Q1/3/R)1.301H/R-0.0720.864
矢量和28.7891.220-0.216V矢量=28.789(Q1/3/R)1.220H/R-0.2160.830
三自由面径向13.1971.127-0.197V径向=13.197(Q1/3/R)1.127H/R-0.1970.622
垂向1.9750.460-0.085V垂向=1.975(Q1/3/R)0.460H/R-0.0850.666
切向2.1450.667-0.195V切向=2.145(Q1/3/R)0.667H/R-0.1950.660
矢量和19.7081.145-0.272V矢量=19.708(Q1/3/R)1.145H/R-0.2720.687

表5

2种模型的平均相对误差统计结果"

自由面数一元萨氏回归模型误差引入高程差H的二元 修正公式模型误差
径向垂向切向矢量径向垂向切向矢量
单自由面40.649.241.847.711.812.812.29.5
双自由面15.214.512.213.3
三自由面19.213.217.414.1
误差平均值40.649.241.847.715.413.513.912.3
Bao Song, Guo Lianjun, Mo Hongyi,et al,2022.Preferred model for blast vibration velocity attenuation under the influence of elevation[J].Nonferrous Metals Engineering,12(9):115-121.
Guo Xuebin, Xiao Zhengxue, Zhang Zhicheng,2001.Slope effect of blasting vibration[J].Chinese Journal of Rock Mechanics and Engineering,20(1):83-87.
Hao Quanming, Zhang Zheng, Chang Jianping,2015.Free surface azimuth of blasting vibration velocity in drilling blasting[J].Coal Technology,34(2):328-330.
Huang Cong, Lei Zhen, Wei Shanyang,et al,2022.Evaluation and prediction of elevation blasting vibration based on AHP and normal distribution[J].Engineering Blasting,28(2):121-127,134.
Huang Jianjun, Li Kemin, Chang Zhiguo,et al,2011.Analysis of harmful blasting effects from the small and medium open-pit mine[J].Opencast Mining Technology,(6):1-3.
Ji Xinyu, Wang Hailiang, Gao Shang,et al,2021.Study on the influence of the number of tunnel blasting free surfaces on ground surface vibration[J].Traffic Engineering and Technology for National Defence,19(6):18-22,35.
Jia B X, Zhou L L, Cui J J,et al,2021.Attenuation model of tunnel blast vibration velocity based on the influence of free surface[J].Scientific Reports,11(1):21077.
Jiang N, Zhou C,2012.Blasting vibration safety criterion for a tunnel liner structure[J].Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,32:52-57.
Jiang Nan, Zhou Chuanbo, Ping Wen,et al,2014.Altitude effect of blasting vibration velocity in rock slopes[J].Journal of Central South University(Science and Technology),45(1):237-243.
Li Shenglin, Fang Zhengang, Yang Rui,et al,2019.Analysis of ground vibration caused by blasting construction of shallow buried tunnel[J].Blasting,36(2):111-116.
Li Xianglong, Zhang Qihu, Wang Jianguo,et al,2021.Experimental study on precise delay hole-by-hole blasting vibration reduction of underground blasting[J].Gold Science and Technology,29(3):401-410.
Liao Dehua, Zhang Jianqiu, Hu Shilong,et al,2023.Analysis of elevation effect of blasting vibration on high-rise buildings near river in channel dredging[J].Blasting,40(3):170-176.
Liu Meishan, Wu Congqing, Zhang Zhengyu,2007.Experimentation on judging standard of blasting vibration safety in high slope excavation of Xiaowan hydropower station[J].Journal of Changjiang River Science Research Institute,110(1):40-43.
Peng Y X, Wu L, Chen C H,et al,2018.Study on the robust regression of the prediction of vibration velocity in underwater drilling and blasting[J].Arabian Journal for Science and Engineering,43:5541-5549.
Qiu Jinming,2015.Elevation Amplification Effect of Blasting Vibration in Open Bench[D].Nanchang:Jiangxi University of Science and Technology.
Simangunsong G M, Wahyudi S,2015.Effect of bedding plane on prediction blast-induced ground vibration in open pit coal mines[J].International Journal of Rock Mechanics and Mining Sciences,79:1-8.
Su Yu,2012.Study on Influence of Tunnel Blasting Vibration on Ground Particles and Adjacent Buildings[D].Qingdao:Ocean University of China.
Tang Hai, Li Haibo,2011.Study of blasting vibration formula of reflecting amplification effect on elevation[J].Rock and Soil Mechanics,32(3):820-824.
Tang Hai, Ma Yujie, Xia Xiang,et al,2021.Study on blasting vibration law of negative height difference topographic[J].Engineering Blasting,27(5):16-25.
Xie Chengyu, Luo Zhouquan, Jia Nan,et al,2013.Dynamic effects of open blasting vibration on adjacent buildings and measures for vibration reduction[J].Journal of Vibration and Shock,32(13):187-193.
Yang Shan, Chen Jianhong, Guo Hongbin,et al,2011.Application of regressive analysis in the research on propagation law of tunnel blasting vibration[J].China Safety Science Journal,21(10):71-75.
Zeng X H, Zhang X M, Zhou X S,et al,2023.Prediction of tunnel blasting vibration velocity considering the influence of free Surface[J].Applied Sciences,13(3):1373.
Zeng Xiaohui, Zhang Xuemin, Dai Bin,et al,2023.Prediction of tunnel blasting vibration velocity considering influence of number of free surfaces and resistance line[J].Journal of Safety and Technology,19(6):83-89.
Zhang Xiaojun,2021.Theoretical Research and Application of Elevation Effect of Bench Blasting Vibration[D].Beijing:University of Science and Technology Beijing.
Zhou J R, Lu W B, Zhong D W,et al,2021.Prediction of frequency-dependent attenuation of blast-induced vibration in underground excavation[J].European Journal of Environmental and Civil Engineering,25(12):2181-2198.
包松,郭连军,莫宏毅,等,2022.高程影响下爆破振动速度衰减模型优选研究[J].有色金属工程,12(9):115-121.
郭学彬,肖正学,张志呈,2001.爆破振动作用的坡面效应[J].岩石力学与工程学报,20(1):83-87.
郝全明,张政,常建平,2015.钻孔爆破中自由面方位角对爆破振速的影响[J].煤炭技术,34(2):328-330.
黄聪,雷振,韦善阳,等,2022.基于AHP和正态分布的高程爆破振动评价与预测[J].工程爆破,28(2):121-127,134.
黄建军,李克民,常治国,等,2011.中小型露天矿山爆破有害效应分析[J].露天采矿技术,(6):1-3.
冀新宇,王海亮,高尚,等,2021.隧道爆破自由面数量对地表振动影响研究[J].国防交通工程与技术,19(6):18-22,35.
蒋楠,周传波,平雯,等,2014.岩质边坡爆破振动速度高程效应[J].中南大学学报(自然科学版),45(1):237-243.
李胜林,方真刚,杨瑞,等,2019.浅埋地铁隧道爆破施工引起的地表振动规律分析[J].爆破,36(2):111-116.
李祥龙,张其虎,王建国,等,2021.地下爆破精确延时逐孔起爆减振试验研究[J].黄金科学技术,29(3):401-410.
廖德华,张建球,扈世龙,等,2023.航道疏浚临河高层建筑爆破振动高程效应分析[J].爆破,40(3):170-176.
刘美山,吴从清,张正宇,2007.小湾水电站高边坡爆破震动安全判据试验研究[J].长江科学院院报,110(1):40-43.
邱金明,2015.露天台阶爆破振动高程放大效应研究[D].南昌:江西理工大学.
苏宇,2012.隧道爆破振动对地表及临近建筑物影响研究[D].青岛:中国海洋大学.
唐海,李海波,2011.反映高程放大效应的爆破振动公式研究[J].岩土力学,32(3):820-824.
唐海,马谕杰,夏祥,等,2021.负高差地形爆破振动规律研究[J].工程爆破,27(5):16-25.
谢承煜,罗周全,贾楠,等,2013.露天爆破振动对临近建筑的动力响应及降振措施研究[J].振动与冲击,32(13):187-193.
杨珊,陈建宏,郭宏斌,等,2011.基于回归分析的隧道爆破振动传播规律研究[J].中国安全科学学报,21(10):71-75.
曾晓辉,张学民,戴斌,等,2023.考虑自由面数量和抵抗线影响的隧道爆破振速预测[J].中国安全生产科学技术,19(6):83-89.
张小军,2021.台阶爆破振动高程效应理论研究及应用[D].北京:北京科技大学.
[1] 郭良银,蒋万飞,宋召法,刘晓光,张金超. 新城金矿阶段空场嗣后充填法开采大直径深孔切槽爆破方法[J]. 黄金科学技术, 2022, 30(4): 585-593.
[2] 王卫华,刘洋,张理维,张恒根. 基于RHT模型双孔同时爆破均质岩体损伤的数值模拟[J]. 黄金科学技术, 2022, 30(3): 414-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!