img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (3): 523-538.doi: 10.11872/j.issn.1005-2518.2024.03.039

• 采选技术与矿山管理 • 上一篇    下一篇

数据趋势融合分析方法在岩石破裂判识与预警中的应用

李昌1(),张见2,陈资南2,阚忠辉2,赵锐2,王晓军3,4()   

  1. 1.江西理工大学资源与环境工程学院,江西 赣州 341000
    2.安徽铜冠庐江矿业有限公司,安徽 合肥 30000
    3.江西理工大学应急管理与安全工程学院,江西 赣州 341000
    4.江西理工大学江西省矿业工程重点实验室,江西 赣州 341000
  • 收稿日期:2024-02-01 修回日期:2024-03-01 出版日期:2024-06-30 发布日期:2024-07-05
  • 通讯作者: 王晓军 E-mail:li15132186897@163.com;xiaojun7903@126.com
  • 作者简介:李昌(1999-),女,河北石家庄人,硕士研究生,从事矿山开采灾害控制与预警方面的研究工作。li15132186897@163.com
  • 基金资助:
    江西省“双千计划”科技创新高端人才项目“离子交换与物理渗流耦合过程稀土矿体微细颗粒沉积—释放行为研究”(jxsq2019201043);江西省研究生创新专项资金项目“地压活动监测多源信息耦合分析方法及软件预警平台开发”(YC2022-S635)

Application of Data Trend Fusion Analysis Method in Rock Failure Identification and Early Warning

Chang LI1(),Jian ZHANG2,Zinan CHEN2,Zhonghui KAN2,Rui ZHAO2,Xiaojun WANG3,4()   

  1. 1.School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    2.Anhui Tongguan Lujiang Mining Co. , Ltd. , Hefei 230000, Anhui, China
    3.School of Emergency Management and Safety Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    4.Jiangxi Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
  • Received:2024-02-01 Revised:2024-03-01 Online:2024-06-30 Published:2024-07-05
  • Contact: Xiaojun WANG E-mail:li15132186897@163.com;xiaojun7903@126.com

摘要:

准确判识岩石破裂对保障矿山安全生产具有重要意义。为此,提出了一种双元数据趋势融合分析方法,以单一趋势指标Ti、融合趋势指标C_Ti和趋势变化率R组合判别岩石破裂阶段。针对应力、位移和声发射3种岩石破坏的伴生信息,构建了象限坐标双元数据趋势融合预警模式,实现了岩石破裂等级的准确判识与预警,并分别采用室内试验数据和现场监测数据进行了验证。研究表明:双元数据趋势融合分析方法可以准确判识室内试验不同岩性岩石的破裂阶段;将该方法应用于现场监测数据分析,其预警结果在象限坐标中的分布具有明显特征,预警危险信号位于第四象限;现场验证该方法的预警结果与实际地压活动情况高度吻合。

关键词: 岩石破裂, 双元数据, 趋势指标, 融合分析, 预警判识, 破裂阶段

Abstract:

Accurate identification of rock failure is of great significance to ensure the safety of mine production.For this reason,the trend fusion analysis method of binary was proposed for rock failure identification and early warning.In this method,the single trend index parameter Ti of different data elements was formed into quadrant coordinate points,and the fusion trend index C_Ti value of coordinate points was calculated.The combination of multiple indicators such as the numerical magnitude of the trend indicator,the continuity and the trend rate of change R were analyzed to discriminate the rock rupture stage.For the three kinds of accompanying information of rock damage,such as stress,displacement and acoustic emission,the trend fusion early warning mode of quadrant coordinate binary data was constructed,including displacement-stress data trend fusion,acoustic emission-stress data trend fusion and displacement-acoustic emission data trend fusion warning model respectively.By using the trend fusion early warning method to establish the standard of warning level,and classify the danger level into four signal categories,namely,danger,more danger,safer and safety, the accurate identification and grading warning of the rock can be realized.The binary date trend fusion analysis method was also validated using laboratory test data and field monitoring data,respectively.The research shows that the binary date trend fusion analysis method can accurately identify the fracture stage of different lithology rocks in laboratory tests.When the method is applied to the analysis of field monitoring data,the distribution of the warning results in the quadrant coordinates has obvious characteristics,and the warning danger signals are located in the fourth quadrant.The field verification shows that the early warning results of the method are highly consistent with the actual geopressure activities,realizing the multi-level hazard warning without threshold by the trend fusion of binary data.

Key words: rock failure, binary data, trend indicator, fusion analysis, early warning identification, rupture stage

中图分类号: 

  • TD315

图1

双元数据趋势融合预警流程图"

图2

位移—应力数据趋势融合预警散点图"

表1

位移—应力数据趋势融合预警结果"

编号位移趋势D_Ti应力趋势S_Ti融合趋势C_Ti趋势变化率R时间DayTi岩石破裂耦合阶段预警等级
10≤0---无破裂安全
20>0-Rs<0-无破裂安全
30>0-Rs>0-微破裂较安全
4>0≥0--DayTi)<3微破裂较安全
5>0>0C_Ti>0Rd>0和Rs>0DayTi)>3稳定破裂较危险
6>0<0--DayTi)<3微破裂较安全
7>0<0C_Ti>0-DayTi)>3稳定破裂较危险
8>0<0C_Ti>0Rd>0和Rs>0DayTi)>3加速破裂危险

图3

声发射—应力数据趋势融合预警散点图"

表2

声发射—应力数据趋势耦合预警结果"

编号声发射趋势Ae_Ti应力趋势S_Ti融合趋势C_Ti趋势变化率R时间DayTi岩石破裂耦合阶段预警等级
1≤0≤0---无破裂安全
20>0-Rs≤0-无破裂安全
30>0-Rs>0-微破裂较安全
4>00-Rae≤0-微破裂较安全
5>00-Rae>0-稳定破裂较危险
6>0>0--DayTi)<3微破裂较安全
7>0>0C_Ti>0Rd>0&&Rs>0DayTi)≥3稳定破裂较危险
8>0<0--DayTi)<3稳定破裂较危险
9>0<0C_Ti>0Rd>0&&Rs>0DayTi)≥3加速破裂危险

图4

位移—声发射数据趋势融合预警散点图"

表3

位移—声发射数据趋势融合预警结果"

编号位移趋势D_Ti声发射趋势Ae_Ti融合趋势C_Ti趋势变化率R时间DayTi岩石破裂耦合阶段预警等级
10≤0---无破裂安全
20>0-Rs<0-无破裂安全
30>0-Rs>0-微破裂较安全
4>0>0--DayTi)<3微破裂较安全
5>0>0C_Ti>0-DayTi)>3稳定破裂较危险
6>0>0C_Ti>0Rd>0&&Rs>0DayTi)>3加速破裂危险

图5

不同岩性岩石应力—时间曲线"

图6

灰岩声发射—应力数据趋势融合破裂判识散点图"

图7

灰岩应力—能量—时间数据破裂判识图"

图8

花岗岩声发射—应力数据趋势融合破裂判识散点图"

图9

花岗岩应力—能量—时间数据破裂判识图"

图10

红砂岩声发射—应力数据趋势融合破裂判识散点图"

图11

红砂岩应力—能量—时间数据破裂判识图"

图12

-705 m中段T109采场监测设备布置情况"

图13

-705 m中段T109采场应力—位移监测数据"

图14

-705 m中段T109采场应力—位移数据趋势融合预警散点图"

图15

采场巷道垮塌现场图"

图16

-705 m中段T101采场应力—位移监测数据"

图17

-705 m中段T101采场应力—位移数据趋势融合预警散点图"

Cong Y, Yuan H C, Abi E,et al,2023.Deformation and acoustic emission characteristics of hard rock under different unloading rates[J].Alexandria Engineering Journal,77:581-591.
Du K, Li X F, Tao M,et al,2020.Experimental study on acoustic emission(AE) characteristics and crack classification during rock fracture in several basic lab tests[J].International Journal of Rock Mechanics and Mining Sciences,133:104411.
Haimson B, Chang C,2000.A new true triaxial cell for testing mechanical properties of rock,and its use to determine rock strength and deformability of Westerly granite[J].International Journal of Rock Mechanics and Mining Science,37(1/2):285-296.
He Z L, Wang F, Deng J H,et al,2023.Fracture and energy evolution of rock specimens with a circular hole under multilevel cyclic loading[J].Theoretical and Applied Fracture Mechanics,127:103996.
Huang Junjie, Xu Xinghua, Cui Xiaopeng,et al,2023.Time series symbolic aggregate approximation method for fusion trend infortmation[J].Application Research of Computers,40(1):86-90.
Li Diyuan, Zhou Aohui, Chen Yuda,et al,2023.Identification of stress thresholds for crack propagation of rock under quasi-static and dynamic loadings[J].Explosion and Shock Waves,43(10):59-72.
Li S J, Yang D X, Huang Z,et al,2022.Acoustic emission characteristics and failure mode analysis of rock failure under complex stress state[J].Theoretical and Applied Fracture Mechanics,122:103666.
Li Shaojun, Feng Guangguang, Qu Dingjun,et al,2022.Monitoring and spatial-temporal evolution characteristics of ground pressure for safety mining in deep phosphate mines[J].Safety and Environmental Engineering,29(4):110-118,204.
Li Zhaolin, Zhou Wei, Wang Lianguo,et al,2022.Unloading properties and fracture characteristics of rock under different true triaxial unloading paths[J].Journal of Mining and Safety Engineering,39(3):480-488,498.
Li Zhuang, Li Jiaqi, Liu Junling,et al,2023.Quantitative analysis and precursor identification of strain field in rock deformation and failure process[J/OL].China Measurement & Test:1-8[2024-05-23]..
Liu C Y, Zhao G M, Xu W S,et al,2023.Experimental study on failure characteristics of single-sided unloading rock under different intermediate principal stress conditions[J].International Journal of Mining Science and Technology,33(3):275-287.
Liu Chao, Yin Siyu, Zhang Jin,et al,2022.Acoustic emission and energy evolution of sandstone failure subjected to deep mining stress[J].Journal of Mining and Safety Engineering,39(3):470-479.
Liu Jian,2023.Research on Rockburst Tendency Mechanism and Fracture Characteristics of Rocks with Different Pore Structures[D].Ganzhou:Jiangxi University of Science and Technology.
Liu X H, Zheng Y, Guo J Y,et al,2022.Deformation and failure characteristics of loading and unloading rock based on volume crack strain[J].Frontiers in Earth Science,10:911823.
Luo Z Q, Wang W, Qin Y G,et al,2019.Early warning of rock mass instability based on multi-field coupling analysis and microseismic monitoring[J].Transactions of Nonferrous Metals Society of China,29(6):1285-1293.
Meng Y Y, Jing H W, Liu X W,et al,2023.Effects of initial unloading level on the mechanical,micro failure and energy evolution characteristics of stratified rock mass under triaxial unloading confining pressure[J].Theoretical and Applied Fracture Mechanics,128:104161.
Qiao Lan, Dong Jinshui, Liu Jian,et al,2023.Review on the study progress of rock burst mechanism and prediction in underground metal mines in China[J].Metal Mine,52(3):14-28.
Qin Min, Liu Chang,2022.Analysis of early warning parameters for ground pressure disaster based on microseismic monitoring[J].Mining and Metallurgical Engineering,42(1):35-40.
Qin Min, Liu Chang, Wang Qian,et al,2022.Study on early warning parameters of microseismic monitoring for ground pressure disaster in a mine plant[J].Mining Research and Development,42(10):180-186.
Shi Feng, Zhang Da, Wu Yafei,et al,2022.Investigation on comprehensive evaluation and analysis of mine ground pressure activity during mining process[J].Nonferrous Metals(Mining Section),74(5):31-36.
Shi Hao, Zhang Houquan, Song Lei,et al,2023.A study on mechanical properties and fracture process of sandstone with prefabricated cracks under dynamic loading[J].Journal of Vibration and Shock,42(4):28-38.
Sun Bo, Ren Fuqiang, Liu Dongqiao,2022.Research on the failure precursors of layered slate based on multifractal characteristics of acoustic emission[J].Rock and Soil Mechanics,43(3):749-760.
Sun Qiancheng, Liu Yue, Wang Qingwen,et al,2023.Law of disturbed stress rotation induced by hard rock excavation and its influence on rock fracture[J].Rock and Soil Mechanics,44(11):3128-3140.
Tang Yuesong, Sun Wenchao, Li Zengqiang,et al,2023.Mining induced stress surge and drop mechanisms in backfilling panel of a coal burst mine[J/OL].Journal of China Coal Society:1-15.[2024-05-23]..
Wang J X, Wang E Y, Yang W X,et al,2022.Rock burst monitoring and early warning under uncertainty based on multi-information fusion approach[J].Measurement,205:112188.
Wang P T, Liu Q R, Zhang Y S,et al,2023.Identifying rock fracture precursor by multivariate analysis based on the digital image correlation technique[J].Theoretical and Applied Fracture Mechanics,126:103987.
Wang Y, Tang P F, Han J Q,et al,2023.Energy-driven fracture and instability of deeply buried rock under triaxial alternative fatigue loads and multistage unloading conditions:Prior fatigue damage effect[J].International Journal of Fatigue, 168:107410.
Wu Xianzhen, Liu Jianwei, Liu Xiangxin,et al,2015.Study on the coupled relationship between AE accumulative ring-down count and damage constitutive model of rock[J].Journal of Mining and Safety Engineering,32(1):28-34,41.
Yan Fayuan, Wang Enzhi, Liu Xiaoli,et al,2023.Comparative study of phase change theory and zonal fracturing field measurements in deep surrounding rocks[J/OL].Journal of China Coal Society:1-9[2024-05-23]..
Yan Siyun, Zhang Dianji,2020.Current situation and analysis of safety treatment of mine ground pressure disaster[J].Modern Mining,36(11):208-211.
Yang Shengqi, Yang Jing, Sun Bowen,et al,2024.Experimental study on damage and fracture characteristics of sandstone under graded stress disturbance based on confining pressure factor[J].Chinese Journal of Rock Mechanics and Engineering,43(3):542-55.
Zhang Jinzhong, Zhang Jun, Yang Qingping,et al,2019.Application of multi-index microseismic classification early warning system in ground pressure disaster warning of NFCA[J].Modern Mining,39(4):175-178,182.
Zhang Yanbo, Yu Guangyuan, Tian Baozhu,et al,2017.Identification of multiple precursor information of acoustic emission dominant frequency in the process of granite failure[J].Journal of Mining and Safety Engineering,34(2):355-362.
Zhao Yong, Gu Xusheng, Wang Shuhong,et al,2023.Common precursor characteristics of uniaxial compression failure of rocks with different lithology[J].Journal of Northeastern University(Natural Science),44(9):1309-1317.
Zhao Ziwei, Kou Yongyuan, Kou Pengfei,et al,2021.Analysis of multi-parameter weight warning model and countermeasures for microseismic monitoring area in Jinchuan No.2 Mining area[J].Mining Technology,21(6):36-39,44.
Zhu Wancheng, Xu Xiaodong, Li Lei,et al,2023.Status and prospect of intelligent monitoring and early-warning technology of geological disaster risk at metal mines[J].Metal Mine,53(1):20-44.
黄俊杰,徐兴华,崔小鹏,等,2023.融合趋势信息的时间序列符号聚合近似方法[J].计算机应用研究,40(1):86-90.
李地元,周奥辉,陈昱达,等,2023.动静荷载作用下岩石裂纹扩展应力阈值识别[J].爆炸与冲击,43(10):59-72.
李邵军,丰光亮,瞿定军,等,2022.深部磷矿山安全开采地压监测与时空演化特征分析[J].安全与环境工程,29(4):110-118,204.
李兆霖,周伟,王连国,等,2022.不同真三轴路径下岩石卸荷特性与破裂特征研究[J].采矿与安全工程学报,39(3):480-488,498.
李壮,李佳其,刘俊岭,等,2023.岩石变形破坏过程应变场定量分析及前兆识别[J/OL].中国测试:1-8 [2024-05-23]..
刘超,尹思禹,张锦,等,2022.深部采动应力条件下砂岩破裂的声发射和能量演化规律研究[J].采矿与安全工程学报,39(3):470-479.
刘健,2023.不同孔隙结构岩石岩爆倾向机理与破裂特征研究[D].赣州:江西理工大学.
乔兰,董金水,刘建,等,2023.我国地下金属矿山岩爆灾害发生机制及预测方法研究进展[J].金属矿山,52(3):14-28.
覃敏,刘畅,2022.基于微震监测的地压灾害预警参数分析研究[J].矿冶工程,42(1):35-40.
覃敏,刘畅,王阡,等,2022.矿山厂地压灾害微震监测预警参数分析研究[J].矿业研究与开发,42(10):180-186.
石峰,张达,吴亚飞,等,2022.矿山开采过程地压活动综合评价分析[J].有色金属(矿山部分),74(5):31-36.
石浩,张后全,宋雷,等,2023.动载下含预制裂纹砂岩的力学特性及破裂过程研究[J].振动与冲击,42(4):28-38.
孙博,任富强,刘冬桥,2022.基于声发射多重分形特征的层状板岩失稳前兆研究[J].岩土力学,43(3):749-760.
孙钱程,刘越,王庆文,等,2023.硬岩开挖诱发扰动应力旋转规律及其对岩体破裂的影响[J].岩土力学,44(11):3128-3140.
唐岳松,孙文超,李增强,等,2023.冲击地压矿井充填开采工作面采动应力激增与跌落机制[J/OL].煤炭学报:1-15[2024-05-23]..
吴贤振,刘建伟,刘祥鑫,等,2015.岩石声发射振铃累计计数与损伤本构模型的耦合关系探究[J].采矿与安全工程学报,32(1):28-34,41.
严思芸,张电吉,2020.矿山地压灾害安全处理现状和分析[J].现代矿业,36(11):208-211.
燕发源,王恩志,刘晓丽,等,2023.深部围岩相变理论与分区破裂化现场实测对比研究[J/OL].煤炭学报:1-9[2024-05-23]..
杨圣奇,杨景,孙博文,等,2024.基于围压因素的分级应力扰动下砂岩损伤破裂特性试验研究[J].岩石力学与工程学报,43(3):542-555.
张金钟,张君,杨清平,等,2023.多指标微震分级预警体系在中色非矿地压灾害预警中的应用[J].现代矿业,39(4):175-178,182.
张艳博,于光远,田宝柱,等,2017.花岗岩破裂过程声发射主频多元前兆信息识别[J].采矿与安全工程学报,34(2):355-362.
赵永,古旭升,王述红,等,2023.不同岩性岩石单轴压缩破坏共性前兆特征[J].东北大学学报(自然科学版),44(9):1309-1317.
赵子巍,寇永渊,寇鹏飞,等,2021.金川二矿区微震监测区域多参数权重预警模型与对策分析[J].采矿技术,21(6):36-39,44.
朱万成,徐晓冬,李磊,等,2024.金属矿山地质灾害风险智能监测预警技术现状与展望[J].金属矿山,53(1):20-44.
[1] 方传峰,王晋淼,李剡兵,贾明涛. 基于PFC2D-DFN的自然崩落法数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 189-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[2] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[3] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .
[4] 衣存昌, 臧恩光. 黑龙江老柞山金矿成矿规律及深部找矿探讨[J]. J4, 2010, 18(4): 58 -61 .
[5] 胡琴霞, 陈凯, 陈超, 张圣潇. 广东那程银金矿床地质特征及成矿规律浅析[J]. J4, 2011, 19(1): 16 -20 .
[6] 陈力子, 曹东宏, 杨登美. 陕西金龙山金矿古楼山矿段元素地球化学特征[J]. J4, 2011, 19(1): 28 -33 .
[7] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[8] 陆树林, 苏建华. 顶吹烟化法在回收铟中的应用[J]. J4, 2010, 18(4): 71 -74 .
[9] 白复锌, 王善功, 安智海. 地下矿山开采三维可视化系统在鑫汇金矿的应用[J]. J4, 2011, 19(1): 55 -57 .
[10] 徐忠敏,庄宇凯,栾作春. 部分正交析因法在浮选流程优化试验中的应用[J]. J4, 2008, 16(1): 7 -11 .