img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (4): 594-609.doi: 10.11872/j.issn.1005-2518.2024.04.089

• 采选技术与矿山管理 • 上一篇    下一篇

复杂工况下岩石真三轴试验机隔热材料热—力学演化特性

郑思将1,2(),李夕兵1,2,陈江湛1,2(),黄麟淇1,2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.深部金属矿产开发与灾害控制湖南省重点实验室,湖南 长沙 410083
  • 收稿日期:2024-03-29 修回日期:2024-06-20 出版日期:2024-08-31 发布日期:2024-08-27
  • 通讯作者: 陈江湛 E-mail:1104668655@qq.com;jiangzhanchen@csu.edu.cn
  • 作者简介:郑思将(2000-),男,浙江温州人,硕士研究生,从事岩石力学研究工作。1104668655@qq.com
  • 基金资助:
    国家自然科学基金项目“深部多场耦合岩体致灾能量诱变试验系统”(51927808)

Thermal-Mechanical Evolution Characteristics of Thermal Insulation Materials of Rock True Triaxial Testing Machines Under Complex Working Conditions

Sijiang ZHENG1,2(),Xibing LI1,2,Jiangzhan CHEN1,2(),Linqi HUANG1,2   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.Hunan Key Laboratory of Deep Metal Mineral Exploitation and Disaster Control, Changsha 410083, Hunan, China
  • Received:2024-03-29 Revised:2024-06-20 Online:2024-08-31 Published:2024-08-27
  • Contact: Jiangzhan CHEN E-mail:1104668655@qq.com;jiangzhanchen@csu.edu.cn

摘要:

高温真三轴试验机研制过程中,高温环境、循环加卸载和循环热冲击等复杂加载条件对试验系统隔热性能提出了严苛要求。为了科学合理地选择复杂条件下高温真三轴试验机的隔热材料,制备了3种高温工程隔热材料,分别是高聚热能酰胺脂隔热材料(GX)、玻璃纤维与耐高温树脂复合隔热材料(BX)和高温阻隔复合云母材料(YM),并开展考虑实际仪器设备工况下的循环热冲击、高温环境和循环加卸载等室内试验。结果表明:在高温环境影响下3种隔热材料的导热系数均随温度的升高呈现先升高后降低的趋势,弹性模量出现了一定幅度的下降;随着循环加热冷却次数的增加,YM材料的导热系数数值平稳下降,BX和GX材料的导热系数呈现先升高后降低的变化趋势,弹性模量变化规律与高温环境影响下相似;隔热材料的导热系数均随着循环加卸载次数的增加呈现先升高后降低的变化趋势,其中初次加卸载对材料隔热性能和物理性能的影响最大;综合热—力学性能评判,YM材料性能最稳定,为岩石真三轴试验机隔热材料的最优选。

关键词: 隔热材料, 循环加热冷却, 循环加卸载, 隔热性能, 物理性能

Abstract:

During the development of high-temperature true triaxial testing, the imposition of high-temperature environments, cyclic loading and unloading, cyclic thermal shocks, and other complex loading conditions necessitates stringent requirements for the thermal insulation performance of the test system. In oder to scientifically and rationally select appropriate thermal insulation materials for the high-temperature true triaxial test machines under such complex conditions, three kinds of high-temperature engineering thermal insulation materials (GX), glass fiber, and high-temperature resistant resin composite thermal insulation material (BX) and high temperature barrier composite mica material (YM)were prepared. A series of laboratory tests, including cyclic thermal shock, high-temperature exposure, and cyclic loading and unloading, were conducted to simulate the mechanical and thermal conditions representative of operational environments. These tests aimed to evaluate the thermal conductivity, elastic modulus, compressive strength, and microstructural evolution characteristics of the materials under complex working conditions. The results indicate that the thermal conductivity of the three insulation materials initially increases and subsequently decreases with rising temperature under high-temperature conditions, while the elastic modulus exhibits a certain degree of reduction. During cyclic thermal shock experiments, the thermal conductivity of the YM material demonstrated a consistent decline with an increasing number of heating and cooling cycles. In contrast, the thermal conductivity values of the other two materials initially increased and then decreased.The variation in the elastic modulus exhibited a pattern analogous to that observed under high-temperature conditions. Under cyclic loading and unloading conditions, the thermal conductivity of the insulation material initially increases and subsequently decreases as the number of cycles progresses. Notably, the first cycle of loading and unloading exerts the most significant influence on the thermal insulation and physical properties of the material. Scanning Electron Microscopy (SEM) results indicate that the pores within the laminated structure of the YM material remained small following thermal shock, with no significant crack formation observed after high-temperature treatment. The structure was both complete and stable. A comprehensive evaluation of the thermo-mechanical properties revealed that, after exposure to high-temperature environments and cyclic thermal shock, the structural integrity of the YM material was exceptionally stable. Consequently, YM material is deemed the optimal choice for insulation in rock true triaxial testing machines. This study establishes a foundational framework for the selection of thermal insulation materials in true triaxial test equipment and offers significant guidance for both the research and application of thermal insulation material sheets in true triaxial test machines.

Key words: thermal insulation materials, circulating heating and cooling, cyclic loading and unloading, thermal conductivity, physical property

中图分类号: 

  • TD315

图1

真三轴高温试验机隔热材料应用示意图"

图2

3种隔热材料板表面(a)玻璃纤维耐高温树脂复合绝缘隔热材料;(b)高聚热能酰胺脂复合隔热材料;(c)耐高温绝缘防火云母隔热材料"

图3

3种隔热材料板侧面(a)玻璃纤维耐高温树脂复合绝缘隔热材料;(b)高聚热能酰胺脂复合隔热材料;(c)耐高温绝缘防火云母隔热材料"

表1

隔热材料热力学参数测试方案"

序号测试内容环境条件性能参数测试
1高温环境下的热力学稳定性将隔热材料加热至25,200,400,600 ℃

物理力学性能测试

导热性能测试

2循环热损伤下的热力学稳定性400 ℃循环热冲击,循环15次、30次和45次
3循环应力加载下的热力学稳定性应力循环加卸载2次、25次和50次

图4

高温实验炉"

图5

上海华龙WHY-200微机控制压力试验机"

图6

TC3000E导热系数测试仪"

图7

岩石常规三轴压力系统"

图8

扫描电镜设备图"

图9

3种隔热材料的导热系数随温度的变化趋势"

图10

3种隔热材料高温处理后应力—应变曲线"

表2

高温处理后隔热板材物理性能"

隔热材料类型

加热温度

/℃

抗压强度

/MPa

弹性模量

/GPa

变化率

/%

高温绝缘防火隔热云母板(YM)25>32012.09-
200>32011.65-3.64
400>32010.20-12.45
600>3208.52-16.47
玻璃纤维耐高温树脂复合隔热板(BX)25>32012.90-
200>32011.94-7.44
400>32011.85-0.75
600>3206.55-44.73
高聚热能酰胺脂隔热板(GX)25242.6614.68-
200285.2113.28-9.54
400304.3213.221-0.44
600>3209.15-30.69

图11

部分隔热材料板破坏示意图"

图12

循环加热后3种隔热材料的导热系数变化"

图13

隔热材料在循环热冲击影响下的应力—应变曲线"

表3

循环加热冷却后隔热板材料物理性能变化"

隔热材料类型循环加热次数/次

抗压强度

/MPa

弹性模量

/GPa

变化率

/%

高温绝缘防火隔热

云母板(YM)

0>32012.09-
15>32010.05-16.91
30>3208.94-11.02
45>3207.41-17.11
玻璃纤维耐高温树脂复合隔热板(BX)0>32012.9-
15>32012.15-5.81
30>32011.01-9.38
45>3207.61-30.88

高聚热能酰胺脂

隔热板(GX)

0304.3214.68-
15286.6213.52-7.90
30>32011.75-13.09
45>32010.09-14.12

图14

3种隔热材料循环加卸载25次应力—应变曲线"

图15

3种隔热材料循环加卸载50次应力—应变曲线"

图16

循环加卸载后3种隔热材料导热系数变化"

图17

3种隔热材料600 ℃下扫描电镜图像"

图18

3种隔热材料45次循环加热冷却后扫描电镜图像"

Cai Meifeng, Ji Duo, Chen Xiangsheng,et al,2021.Development strategy for co-mining of the deep mineral and geothermal resources[J].Strategic Study of CAE,23(6):43-51.
Cai Meifeng, Xue Dinglong, Ren Fenhua,2019.Current status and development strategy of metal mines[J].Chinese Journal of Engineering,41(4):417-426.
Cuce E, Cuce P M, Wood C J,et al,2014.Toward aerogel based thermal superinsulation in buildings:A comprehensive review[J].Renewable and Sustainable Energy Reviews,34:273-299.
Ding Ze, Lu Xiaolian,2021. Analysis of influencing factors on thermal insulation performance of polyimide foam insulation materials[J].China Science and Technology Talent,(1):17-19.
Dong Hengrui, Qin Yanyao, Deng Lingxi,et al,2019.A review of measuring methods for thermal conductivity of building energy-saving materials[J].Chongqing Architecture,18(11):54-57.
Frash L P, Gutierrez M, Hampton J,2014.True-triaxial apparatus for simulation of hydraulically fractured multi-borehole hot dry rock reservoirs[J].International Journal of Rock Mechanics and Mining Sciences,70(9):496-506.
Fu Xuan,2022.Human-Machine Safety Design and Evaluation of Deep Multi-field Coupling and Dynamic Disturbance True Triaxial Testing Machine[D].Changsha:Central South University.
Fu Xuan, Huang Linqi, Chen Jiangzhan,et al,2022.Meeting the challenge of high geothermal ground temperature environment in deep mining-research on geothermal ground temperature simulation platform of rock true triaxial testing machine[J].Gold Science and Technology,30(1):72-84.
Gao Zhan, Zhang Qizhi,2021.Study on the durability of five kinds of thermal insulation materials[J].Chemistry and Adhesion,43(3):182-185.
Gu J, Fu R, Kang S,et al,2022.Robust composite aerogel beads with pomegranate-like structure for water-based thermal insulation coating[J].Construction and Building Materials,341:127722.
He Haoyu, Shi Lu, Li Xiaochun,et al,2015.True triaxial tests with new mogi-type true triaxial test apparatus and its loading boundary effect[J].Chinese Journal of Rock Mechanics and Engineering,34(Supp.1):2837-2844.
He Manchao, Xie Heping, Peng Suping,et al,2005.Study on rock mechanics in deep mining engineering[J].Chinese Journal of Rock Mechanics and Engineering,24(16):2803-2813.
Huang Linqi, Chen Jiangzhan, Zhou Jian,et al,2021.Practice and thought on sustainable development of nonferrous metal mining[J].The Chinese Journal of Nonferrous Metals, 31(11):3436-3449.
Jiang Yewei, Xin Song, Zhang Long,et al,2020.Experimental research on performance comparison of three kinds of mining thermal insulation materials[J].Mining Research and Development,40(6):85-88.
Li Xibing, Gong Fengqiang,2021.Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J].Journal of China Coal Society,46(3):846-866.
Li Xibing, Zhou Jian, Wang Shaofeng,et al,2017.Review and practice of deep mining for solid mineral resources[J].The Chinese Journal of Nonferrous Metals,27(6):1236-1262.
Liu Zaobao, Wang Chuan, Zhou Hongyuan,et al,2021.A true triaxial time-dependent test system with two rigid and one flexible loading frame for rock under real-time high temperature and high pressure and its application[J].Chinese Journal of Rock Mechanics and Engineering,40(12):2477-2486.
Lombos L, Roberts D W, King M S,2013.Design and development of integrated true triaxial testing system[C]//Kwaśniewski M,Li X C,Takahashi M B,eds.True Triaxial Testing of Rocks.London:Taylor and Francis.
Ma Jianxiong, Xue Linfu, Zhao Jinmin,et al,2019.Numerical simulation and design optimization of temperature field of oil shale in situ pyrolysis and exploitation[J].Science Technology and Engineering,19(5):94-103.
Ma Xiao, Ma Dongdong, Hu Dawei,et al,2019.A real-time high-temperature true triaxial test system and its application[J].Chinese Journal of Rock Mechanics and Engineering,38(8):1605-1614.
Standardization Administration of the People’s Republic of China,2008. Thermal Insulation Materials, Thermal insulation—Determination of steady-state thermal resistance and related properties—Guarded hot plate apparatus: [S].Beijing:Standards Press of China.
Niu Xuechao, Zhang Qingxi, Yue Zhongwen,2013.Current situation and development trends of rock triaxial testing machines[J].Rock and Soil Mechanics,34(2):600-607.
Pan Y, Zheng J, Xu Y Y,et al,2022.Ultralight,highly flexible in situ thermally crosslinked polyimide aerogels with superior mechanical and thermal protection properties via nanofiber reinforcement[J].Journal of Colloid and Interface Science,628:829-839.
Ren Song, Yang Chunhe, Jiang Deyi,et al,2011.Development and application of high temperature triaxial salt dissolution testing machine [J].Chinese Journal of Rock Mechanics and Engineering,30(2):289-295.
Song Jieguang, Liu Yonghua, Chen Linyan,et al,2010.Current research status and development of thermal insulating materials in the world[J].Materials Reports,24(Supp.1):378-380,394.
Sun Lixin, Feng Chi, Cui Yumeng,2017.Influence of temperature and moisture content on the thermal conductivity of building materials[J].Journal of Civil and Environmental Engineering,39(6):123-128.
Villasmil W, Fischer L J, Worlitschek J,2019.A review and evaluation of thermal insulation materials and methods for thermal energy storage systems[J].Renewable and Sustainable Energy Reviews,103:71-84.
Wan Z, Zhang Y, Cheng J,et al,2013.Mine geothermal and heat hazard prevention and control in China[J].Disaster Advances,6:85-93.
Wang Fang,2019.Influencing factors of thermal conductivity of thermal insulation materials[J].Shanghai Textile Science and Technology,47(6):36-38.
Xie Heping, Gao Feng, Ju Yang,2015.Research and development of rock mechanics in deep ground engineering[J].Chinese Journal of Rock Mechanics and Engineering,34(11):2161-2178.
Yang Zhiyuan, Yang Shuijin,2015.Application of scanning electron microscope in inorganic materials characterization[J].Journal of Hubei Normal University(Natural Science),35(4):56-63.
Zhang Xiwei, Feng Xiating, Kong Rui,et al,2017.Key technology in development of true triaxial apparatus to determine stress-strain curves for hard rocks[J].Chinese Journal of Rock Mechanics and Engineering,36(11):2629-2640.
Zhao Yangsheng, Wan Zhijun, Zhang Yuan,et al,2008.Research and development of 20 MN servo-controlled rock triaxial testing system with high temperature and high pressure[J].Chinese Journal of Rock Mechanics and Engineering,27(1):1-8.
蔡美峰,多吉,陈湘生,等,2021.深部矿产和地热资源共采战略研究[J].中国工程科学,23(6):43-51.
蔡美峰,薛鼎龙,任奋华,2019.金属矿深部开采现状与发展战略[J].工程科学学报,41(4):417-426.
丁泽,卢小莲,2021. 聚酰亚胺泡沫保温材料隔热性能影响因素分析[J].中国科技人才,(1):17-19.
董恒瑞,秦砚瑶,邓铃夕,等,2019.建筑节能材料导热系数测定方法综述[J].重庆建筑,18(11):54-57.
傅璇,2022.深部多场耦合与动力扰动真三轴实验机的人机安全设计与评价[D].长沙:中南大学.
傅璇,黄麟淇,陈江湛,等,2022.迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J].黄金科学技术,30(1):72-84.
高瞻,张启志,2021.五种保温材料的耐久性性能试验研究[J].化学与粘合,43(3):182-185.
何浩宇,石露,李小春,等,2015.基于新型茂木式试验机的真三轴试验及加载边界效应研究[J].岩石力学与工程学报,34(增1):2837-2844.
何满潮,谢和平,彭苏萍,等,2005.深部开采岩体力学研究[J].岩石力学与工程学报,24(16):2803-2813.
黄麟淇,陈江湛,周健,等,2021.未来有色金属采矿可持续发展实践与思考[J].中国有色金属学报,31(11):3436-3449.
江叶伟,辛嵩,张龙,等,2020.三种矿用隔热材料性能对比试验研究[J].矿业研究与开发,40(6):85-88.
李夕兵,宫凤强,2021.基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J].煤炭学报,46(3):846-866.
李夕兵,周健,王少锋,等,2017.深部固体资源开采评述与探索[J].中国有色金属学报,27(6):1236-1262.
刘造保,王川,周宏源,等,2021.岩石高温高压两刚一柔型真三轴时效力学试验系统研制与应用[J].岩石力学与工程学报,40(12):2477-2486.
马建雄,薛林福,赵金岷,等,2019.油页岩原位裂解开采温度场数值模拟与设计方案优化[J].科学技术与工程,19(5):94-103.
马啸,马东东,胡大伟,等,2019.实时高温真三轴试验系统的研制与应用[J].岩石力学与工程学报,38(8):1605-1614.
牛学超,张庆喜,岳中文,2013.岩石三轴试验机的现状及发展趋势[J].岩土力学,34(2):600-607.
任松,杨春和,姜德义,等,2011.高温三轴盐岩溶解特性试验机研制及应用[J].岩石力学与工程学报,30(2):289-295.
宋杰光,刘勇华,陈林燕,等,2010.国内外绝热保温材料的研究现状分析及发展趋势[J].材料导报,24(增1):378-380,394.
孙立新,冯驰,崔雨萌,2017.温度和含湿量对建筑材料导热系数的影响[J].土木建筑与环境工程,39(6):123-128.
王芳,2019.保温材料导热系数影响因素试验研究[J].上海纺织科技,47(6):36-38.
谢和平,高峰,鞠杨,2015.深部岩体力学研究与探索[J].岩石力学与工程学报,34(11):2161-2178.
杨志远,杨水金,2015.扫描电子显微镜在无机材料表征中的应用[J].湖北师范学院学报(自然科学版),35(4):56-63.
张希巍,冯夏庭,孔瑞,等,2017.硬岩应力—应变曲线真三轴仪研制关键技术研究[J].岩石力学与工程学报,36(11):2629-2640.
赵阳升,万志军,张渊,等,2008.20MN伺服控制高温高压岩体三轴试验机的研制[J].岩石力学与工程学报,27(1):1-8.
中国国家标准化管理委员会,2008. 绝热材料稳态热阻及有关特性的测定防护热板法: [S].北京:中国标准出版社.
[1] 杨少峰,蒲成志,曾佳君,李益龙. 不同张开度裂隙类岩体循环加卸载下滞回环特征与损伤变形分析[J]. 黄金科学技术, 2021, 29(3): 392-400.
[2] 曹世荣,肖伟晶,李永欣,王晓军,卓毓龙,冯萧. 循环载荷下块石胶结充填体声发射特性研究[J]. 黄金科学技术, 2017, 25(3): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!