img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (4): 610-619.doi: 10.11872/j.issn.1005-2518.2024.04.067

• 采选技术与矿山管理 • 上一篇    下一篇

水化作用下矽卡岩动态力学响应及能量耗散特征

周宇1,2(),李旭3,张鹏姣3,陈需1,王建国2,4(),李强2,4   

  1. 1.国能准能集团有限责任公司黑岱沟露天煤矿,内蒙古 鄂尔多斯 010300
    2.昆明理工大学国土资源工程学院,云南 昆明 650093
    3.国能准能集团有限责任公司,内蒙古 鄂尔多斯 010300
    4.云南省教育厅爆破新技术工程研究中心,云南 昆明 650093
  • 收稿日期:2024-03-07 修回日期:2024-05-25 出版日期:2024-08-31 发布日期:2024-08-27
  • 通讯作者: 王建国 E-mail:zhy6314836@163.com;wangjg0831@163.com
  • 作者简介:周宇(1983-),男,安徽淮北人,博士研究生,从事露天采矿爆破技术及管理研究工作。zhy6314836@163.com
  • 基金资助:
    国家自然科学基金面上项目“爆破荷载下矿岩破碎特性响应机理研究”(52274083);云南省基础研究计划面上项目“水压爆破波衰减规律及岩石致裂机理研究”(202201AT070178)

Dynamic Mechanical Response and Energy Dissipation Characteristics of Skarn Under Hydration

Yu ZHOU1,2(),Xu LI3,Pengjiao ZHANG3,Xu CHEN1,Jianguo WANG2,4(),Qiang LI2,4   

  1. 1.Heidaigou Open-pit Coal Mine, China Energy Group Zhunge’er Energy Co. , Ltd. , Ordos 010300, Inner Mongolia, China
    2.Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
    3.China Energy Group Zhunge’er Energy Co. , Ltd. , Ordos 010300, Inner Mongolia, China
    4.Advanced Blasting Technology Engineering Research Center of Yunnan Provincial Department of Education, Kunming 650093, Yunnan, China
  • Received:2024-03-07 Revised:2024-05-25 Online:2024-08-31 Published:2024-08-27
  • Contact: Jianguo WANG E-mail:zhy6314836@163.com;wangjg0831@163.com

摘要:

为探究矽卡岩在水化作用下的冲击力学性能,采用可加载轴围压的分离式霍普金森压杆系统(SHPB),分别对自然和饱水状态的矽卡岩试样开展了三维动静组合冲击试验,研究不同含水状态下矽卡岩试样的动态力学特性、能量耗散特征及破碎形态的差异性。结果表明:饱水状态下矽卡岩的动态抗压强度相比自然状态整体有所弱化,减小了10.47%~16.32%,但水对矽卡岩动态力学强度的影响随应变率的增大而逐渐减弱;水会降低矽卡岩试样对能量的吸收率,当吸能密度足够大时,动态抗压强度将不受矽卡岩内部水的影响;水化作用使得试样在饱水和自然状态冲击后的破裂形态率效应差异明显。

关键词: 水化作用, 矽卡岩, 动态力学响应, 能量耗散, 破碎形态

Abstract:

In order to examine the influence of hydration conditions on the mechanical properties of skarn,a Split Hopkinson Pressure Bar(SHPB) system was utilized to apply both axial and confining pressure.Cylindrical samples measuring 50 mm×50 mm were subjected to a combined static-dynamic loading method under natural and water-saturated conditions.The axial pressure applied was 3 MPa,with a confining pressure of 1 MPa.Impact tests were carried out at air pressures of 0.8,0.9,1.0,1.1,1.2 MPa,with three replicates con-ducted for each pressure level.The research examined the dynamic compressive strength,energy transfer characteristics,and fracture morphology of rock samples subjected to axial and confining pressures in different states.A comparison was made between the dynamic mechanical properties and fracture patterns of skarn samples in their natural and water-saturated states,with an analysis of the softening effect of water on the rock.Furthermore,the study investigated the dynamic mechanical properties,energy dissipation,and fracture morphology of skarn samples with varying water content.The findings suggest that the dynamic compressive strength of water-saturated skarn samples was,typically lower than that of samples in their natural state,with a reduction ranging from 10.47% to 16.32%.Nevertheless,the impact of water on the dynamic mechanical strength of skarn was found to decrease as the strain rate increased.Additionally,water was observed to decrease the energy absorption rate of skarn samples,although when the energy absorption density reached a certain threshold,the presence of water did not affect the dynamic compressive strength of the skarn.The impact fracture morphology of water-saturated and natural state samples exhibited differences in the strain rate effect due to hydration.Specifically,skarn in the natural state displayed more pronounced characteristics at lower strain rates.

Key words: hydration, skarn, dynamic mechanical response, energy dissipation, fragmentation morphology

中图分类号: 

  • TU45

图1

自然状态下的矽卡岩试样"

图2

饱水状态下的矽卡岩试样"

表1

自然条件下矽卡岩物理力学参数"

参数数值参数数值
抗压强度/MPa117.02黏聚力/MPa9.63
弹性模量/GPa102.55泊松比0.24
内摩擦角/(°)65.28密度/(g?cm-33.83
抗拉强度/MPa12.39

图3

分离式霍普金森压杆试验系统"

图4

动态冲击典型波形电压平衡"

图5

三维动静组合加载试样受力示意图"

表2

SHPB冲击试验数据"

含水

状态

试件

编号

冲击气压/MPa平均应变率/s-1峰值应力/MPa动态弹模/GPa
自然1-10.8059.26158.0835.85
1-20.9066.87169.1438.28
1-31.0077.47193.4041.88
1-41.1085.26204.5971.04
1-51.2096.20234.0574.54
饱水2-10.8065.52132.2838.41
2-20.9071.02154.9849.11
2-31.0080.67172.1150.32
2-41.1087.42188.0154.37
2-51.2094.06204.1952.52

图6

自然和饱水状态下矽卡岩应力—应变曲线"

图7

动态抗压强度与应变率之间的关系"

图8

应变率与相对软化因子之间的关系"

图9

自然和饱水状态下入射能与3种能量的关系曲线"

表3

不同应变率下各能量分配情况"

含水状态应变率/s-1入射能/J反射能/Jη/%透射能/Jη/%吸收能/Jη/%
自然59.26447.91176.739.45112.6525.15158.5835.40
66.87500.66205.341.01124.524.86174.4434.13
77.47612.94242.8239.62165.8627.06204.1633.32
85.26683.11255.5437.41176.6625.86256.6736.73
96.20796.14305.7638.41184.4723.17309.3938.42
饱水65.52421.14188.9444.8668.5916.29163.6138.85
71.02501.49240.3247.9280.0215.96182.6736.12
80.67615288.3746.8996.4415.68231.8337.43
87.42716.01362.5850.64106.9114.93261.0434.43
94.06798.84380.9647.69120.6615.10301.2637.21

表4

单位体积吸能密度计算结果统计"

含水状态冲击气压/MPa冲击速度/(m·s-1应变率/s-1吸收量/J体积/cm3吸能密度/(J?cm-3动态抗压强度/MPa
自然0.8021.4259.26158.5882.451.92158.08
0.9022.7766.87174.4482.612.11169.17
1.0023.8477.47204.1682.772.47193.40
1.1025.1185.26256.6781.993.13204.59
1.2026.6396.20309.3983.643.70234.05
饱水0.8021.6865.52163.6183.071.97132.27
0.9022.6371.02182.6782.352.22154.98
1.0023.9280.67231.8382.942.80172.11
1.1025.5687.42261.0482.113.18188.01
1.2026.4394.06301.2682.963.63209.55

图10

单位体积吸能密度与动态抗压强度"

图11

自然和饱水状态下矽卡岩的宏观破碎形态"

Cai X, Cheng C Q, Zhao Y,et al,2022.The role of water content in rate dependence of tensile strength of a fine-grained sandstone[J].Archives of Civil and Mechanical Engineering,22.DOI:10.1007/s43452-022-00379-8 .
doi: 10.1007/s43452-022-00379-8
Cai X, Zhou Z, Liu K,et al,2019.Water-weakening effects on the mechanical behavior of different rock types:Phenomena and mechanisms[J].Applied Sciences,9(20):4450.
Dai F, Huang S, Xia K,et al,2010.Some fundamental issues in dynamic compression and tension tests of rocks using split hopkinson pressure bar[J].Rock Mechanics and Rock Engineering,43(6):657-666.
Gong F Q, Si X F, Li X B,et al,2019.Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar[J].International Journal of Rock Mechanics and Mining Sciences,113:211-219.
Gong Fengqiang, Li Xibing, Liu Xiling,2011.A preliminary study on the mechanical properties of rocks under three-dimensional static and dynamic loading[J].Chinese Journal of Rock Mechanics and Engineering,30(6):1179-1190.
Gong Fengqiang, Li Xibing, Liu Xiling,2012.Tests for sandstone mechnical properties and failure model under triaxial SHPB loading[J].Journal of Vibration and Shock,31(8):29-32.
Jiao Zhenhua, Jiang Yaodong, Zhao Yixin,et al,2023.Energy dissipation and damage characteristics of lateral-restraint coal under impact load[J].Journal of China University of Mining and Technology,52(3):492-501.
Jin Jiefang, Yu Xiong, Zhong Yilu,2021.Energy dissipation characteristics of red sandstone with different water content during impact loading[ J ].Nonferrous Metal Science and Engineering,12(5) :69-80.
Li X L, Wu Y B, He L H,et al,2022.Research on dynamic properties of deep marble influenced by high temperature[J].Mathematics,10(15):2603.
Li Xibing,2014.Rock Dynamics Fundamentals and Applications[M].Beijing:Science Press.
Li Yexue, Zhang Qiming, Zhou Wei,2020.On the influence of dry and saturated sandstone porosity on stress wave energy consumption [ J ].Journal of Experimental Mechanics,35(1):174-182.
Liu X Y, Dai F, Liu Y,et al,2021.Experimental investigation of the dynamic tensile properties of naturally saturated rocks using the coupled static-dynamic flattened brazilian disc method[J].Energies,14(16):4784
Wang J G, Lei L G, Liu Y,et al,2023.Fracture fractal and energy transfer characteristics of deep-mine marble under an impact load[J].Minerals,13(2):275.
Wang Wen, Li Huamin, Gu Helong,2017.Experimental study of strength characteristics of water-saturated coal specimens under 3D coupled static-dynamic loadings[J].Chinese Journal of Rock Mechanics and Engineering,36(10):2406-2414.
Wang Wen, Li Huamin, Yuan Ruifu,et al,2015.Micromechanics analysis and mechanical characteristics of water-saturated coal samples under coupled static-dynamic loads[J].Journal of Rock Mechanics and Engineering,34(Supp.2):3965-3971.
Wang Wen, LI Huamin, Yuan Ruifu,et al,2016.Micromechanics analysis and mechanical characteristics of water-saturated coal samples under coupled static-dynamic loads[J].Journal of China Coal Society,41(3):611-617.
Weng L, Wu Z J, Liu Q S,2019.Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures[J].Engineering Fracture Mechanics,220:106659.
Xia Kaiwen, Wang Zheng, Wu Bangbiao,et al,2024.Research progress on dynamic response of deep rocks under coupled hydraulic-mechanical loading[J].Journal of China Coal Society,49(1):454-478.
Xie Heping,2019.Research review of the state key research development program of China:Deep rock mechanics and mining theory[J].Journal of China Coal Society,44(5):1283-1305.
Xu Songlin, Wang Pengfei, Shan Junfang,et al,2018.Dynamic mechanical properties of concrete under true triaxial static load[J]. Journal of Vibration and Shock,37(15):59-67.
You W, Dai F, Liu Y,et al,2021.Investigation of the influence of intermediate principal stress on the dynamic responses of rocks subjected to true triaxial stress state[J].International Journal of Mining Science and Technology,31(5):913-926.
Zhou Z L, Cai X, Li X B,et al,2020.Dynamic response and energy evolution of sandstone under coupled static-dynamic compression:Insights from experimental study into deep rock engineering applications[J].Rock Mechanics and Rock Engineering,53:1305-1331.
Zuo T, Li X L, Wang J G,et al,2024.Insights into natural tuff as a building material:Effects of natural joints on fracture fractal characteristics and energy evolution of rocks under impact load[J].Engineering Failure Analysis,163:108584.
宫凤强,李夕兵,刘希灵,2011.三维动静组合加载下岩石力学特性试验初探[J].岩石力学与工程学报,30(6):1179-1190.
宫凤强,李夕兵,刘希灵,2012.三轴SHPB加载下砂岩力学特性及破坏模式试验研究[J].振动与冲击,31(8):29-32.
焦振华,姜耀东,赵毅鑫,等,2023.侧限约束冲击载荷下煤样能量耗散与损伤特征[J].中国矿业大学学报,52(3):492-501.
金解放,余雄,钟依禄,2021.不同含水率红砂岩冲击过程中的能量耗散特性[J].有色金属科学与工程,12(5):69-80.
李夕兵,2014.岩石动力学基础与应用[M].北京:科学出版社.
李业学,张启明,周炜,2020.干燥和饱水砂岩孔隙度对应力波能耗的影响[J].实验力学,35(1):174-182.
王文,李化敏,顾合龙,2017.三维动静组合加载含水煤样强度特征试验研究[J].岩石力学与工程学报,36(10):2406-2414.
王文,李化敏,袁瑞甫,等,2015.动静组合加载含水煤样能量耗散特征分析[J].岩石力学与工程学报,34(增2):3965-3971.
王文,李化敏,袁瑞甫,等,2016.动静组合加载含水煤样的力学特征及细观力学分析[J].煤炭学报,41(3):611-617.
夏开文,王峥,吴帮标,等,2024.流固耦合作用下深部岩石动态力学响应研究进展[J].煤炭学报,49(1):454-478.
谢和平,2019.深部岩体力学与开采理论研究进展[J].煤炭学报,44(5):1283-1305.
徐松林,王鹏飞,单俊芳,等,2018.真三轴静载作用下混凝土的动态力学性能研究[J].振动与冲击,37(15):59-67.
[1] 宋高瑞, 翟新伟, 王二腾, 武磊, 陈万峰, 郑菲菲, 王海东, 王金荣. 甘肃花牛山金矿床成矿流体性质及矿床成因[J]. 黄金科学技术, 2023, 31(6): 873-887.
[2] 李博,邹少浩,许德如,陈喜连,王雪娜,王华. 湘南新田岭矽卡岩型白钨矿床中石榴子石的成分特征及其对钨成矿作用的启示[J]. 黄金科学技术, 2023, 31(2): 232-251.
[3] 赖玉彰,支学艺,舒荣华. 复合岩石单轴压缩力学与破坏特性试验研究[J]. 黄金科学技术, 2022, 30(5): 778-786.
[4] 冼源宏,詹华思,李健唐. 广东怀集地区矽卡岩型铁多金属矿床同位素地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(6): 805-816.
[5] 胡健, 宫凤强, 贾航宇. SHPB压缩试验中红砂岩的力学与能量耗散特性研究[J]. 黄金科学技术, 2020, 28(3): 411-420.
[6] 高云峰,杨兴科,阮仕琦,韩珂,张伟胜,朱伟. 南秦岭镇安西部钨矿集区控矿构造特征及找矿标志[J]. 黄金科学技术, 2019, 27(4): 489-496.
[7] 宋均秋,谷建军,郎朋林. 内蒙古长岭子铅锌矿地质特征及矿床成因探讨[J]. 黄金科学技术, 2016, 24(4): 54-59.
[8] 吴兴泉,王治华,王梁,常春郊,丛润祥,张慧玉. 内蒙古朝不楞铁多金属矿床地质特征及找矿方向[J]. 黄金科学技术, 2014, 22(2): 31-37.
[9] 张志乾, 王建宁. 华铜矿金钼矿床地质特征及找矿方向[J]. J4, 2009, 17(2): 34-37.
[10] 林洪勇. 双鸭山七星河金矿矽卡岩中金矿化地质特征、成矿规律及矿床成因探讨[J]. J4, 2008, 16(3): 26-29.
[11] 许明亮, 杨建国, 李远昌. 宝清县团结山金铜矿床地质特征及成因探讨[J]. J4, 2006, 14(4): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!