img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (4): 631-639.doi: 10.11872/j.issn.1005-2518.2024.04.075

• 采选技术与矿山管理 • 上一篇    下一篇

尾砂粒级组成对胶结充填料流变特性与强度的影响

盛宇航1,2(),裴佃飞3,齐兆军1,2,荆晓东1,2   

  1. 1.山东黄金矿业科技有限公司,山东 济南 250000
    2.山东省深海深地金属矿智能开采重点实验室,山东 济南 250000
    3.山东黄金集团有限公司,山东 济南 250000
  • 收稿日期:2024-03-19 修回日期:2024-05-06 出版日期:2024-08-31 发布日期:2024-08-27
  • 作者简介:盛宇航(1988-),男,山东济宁人,高级工程师,从事尾砂充填技术等方面的研究工作。syhiacs@163.com
  • 基金资助:
    国家重点研发计划项目“深部低废高效机械化充填采矿技术研究”(2018YFC0604601)

Influence of Particle Size Composition of Tailings on Rheological Characteristics and Strength of Cemented Tailings Backfill

Yuhang SHENG1,2(),Dianfei PEI3,Zhaojun QI1,2,Xiaodong JING1,2   

  1. 1.Shandong Gold Mining Technology Co. , Ltd. , Jinan 250000, Shandong, China
    2.Shandong Key Laboratory of Deep-sea and Deep-earth Metallic Mineral Intelligent Mining, Jinan 250000, Shandong, China
    3.Shandong Gold Group Co. , Ltd. , Jinan 250000, Shandong, China
  • Received:2024-03-19 Revised:2024-05-06 Online:2024-08-31 Published:2024-08-27

摘要:

为探究尾砂粒级组成与充填料流变特性及强度之间的关系,采用全尾砂、旋流器分级溢流和底流尾砂经人工配制成5种尾砂充填料,开展了不同粒级组成尾砂充填料流变与强度试验。结果表明:随着尾砂中-38 μm细粒级含量的增加,充填料浆屈服应力和塑性黏度增加,且-38 μm细粒级含量越高充填料浆屈服应力和塑性黏度增加幅度越大;随着细粒级尾砂含量的增加,水化膜厚度呈先增加后降低的变化趋势;充填料浆初始屈服应力和塑性黏度受水化膜厚度和固体颗粒比表面积的双重影响;当细粒级尾砂含量超过44.37%时,水化膜厚度与充填料浆初始屈服应力和塑性黏度之间存在负指数关系。随着细粒级尾砂含量的增加,尾砂充填体强度先增加后减小,细粒级含量为44.37%时为尾砂最佳粒级组成,此时充填体中尾砂堆积所形成的骨架结构最密实,充填体总孔隙率、平均孔径和大于0.2 μm有害孔占比最小。

关键词: 尾砂粒级组成, 胶结充填料, 流变特性, 水化膜厚度, 强度, 孔结构

Abstract:

To investigate the correlation between the particle size distribution of tailings and the rheological properties and strength of cemented tailings backfill(CTB),five different types of CTBs were artificially prepared using full tailings,cyclone overflow,and underflow tailings.Rheological and strength tests were conducted on the CTBs,and changes in the internal pore structure of the tailings backfill were analyzed using mercury intrusion methods(MIP).The impact of the particle size distribution of tailings on the rheological properties,strength,and microstructural characteristics of CTBs were assessed.The findings indicate that an increase in fine tailings content by -38 μm results in higher rheological parameters(yield stress and plastic viscosity) of fresh CTBs,with a greater increase observed at higher fine tailings content levels.The variation in particle size distribution of tailings leads to noticeable differences in the thickness of water film of solid particles in the backfilling slurry.Specifically,an initial increase followed by a subsequent decrease in water film thickness is observed with increasing fine tailings content.The initial yield stress and plastic viscosity of backfilling slurry are influenced by the water film thickness and specific surface area of solid particles.An exponential relationship is observed between the initial yield stress and plastic viscosity of CTB when the fine tailings content exceeds 44.37%.The strength of CTB initially increases and then decreases as the fine tailings content increases.The fine tailings content of 44.37% represents the optimal particle size distribution of tailings.In this condition,the compactness of the skeleton structure of the CTB formed by the accumulation of tailings is at its maximum,resulting in the lowest values for total porosity,average pore size,and the percentage of harmful pores larger than 0.2 μm.

Key words: particle size composition of tailings, cemented tailings backfill, rheological characteristics, water film thickness, strength, pore structure

中图分类号: 

  • TD853

图1

不同类型尾砂和水泥粒径分布曲线"

表1

不同粒级组成尾砂的主要物理性质"

尾砂编号尾砂类型D50/μmD[4,3]/μmCuCc-38 μm含量/%比重比表面积/(m2·kg-1
W140%全+60%溢流17.9546.307.951.0069.652.62779.2
W280%全+20%溢流24.2564.7010.640.8559.442.64681.1
W3100%全32.1479.6013.590.7652.832.65606.1
W480%全+20%底流51.0996.9018.490.7144.372.65528.6
W540%全+60%底流92.15125.0018.931.6330.322.66381.0

表2

尾砂和水泥化学成分分析结果"

材料化学成分/%
CaOSiO2Al2O3Fe2O3MgOK2OSO3TiO2P2O5Na2OLOI
尾砂2.9865.2116.241.720.528.110.450.360.073.071.27
水泥52.7232.049.033.111.300.830.260.450.090.030.12

图2

不同粒级尾砂充填料浆屈服应力与塑性黏度随水化时间变化曲线"

表3

不同粒级尾砂充填料浆水化膜厚度"

尾砂编号浓度/%堆积密度空隙率水化膜厚度/μm初始屈服应力/Pa初始塑性黏度/(Pa·s)
W1740.5530.8080.053197.481.918
W2740.5870.7040.106125.331.157
W3740.6040.6560.14177.080.566
W4740.5980.6720.14554.720.433
W5740.5680.7610.12117.630.385
W1720.5530.8080.093136.461.664
W2720.5870.7040.15172.550.594
W3720.6040.6560.18950.170.335
W4720.5980.6720.19732.570.249
W5720.5680.7610.18412.390.263
W1700.5530.8080.13692.410.853
W2700.5870.7040.19745.450.289
W3700.6040.6560.23931.130.171
W4700.5980.6720.25218.160.134
W5700.5680.7610.2507.310.126

图3

水化膜厚度与充填料浆初始屈服应力(a)和塑性黏度(b)的关系"

图4

尾砂粒级组成对不同养护龄期充填体强度的影响"

图5

养护龄期为28 d时充填体内部孔径分布"

表4

不同尾砂粒级组成充填体MIP测试结果"

尾砂

编号

-38 μm粒级含量/%

质量浓度

/%

总孔隙率

/%

平均孔径

/μm

>0.2 μm孔径占比/%
W169.657240.100.19783.17
W259.447238.940.16979.82
W352.837236.990.14874.69
W444.377234.260.13853.66
W530.327238.010.15477.69
Chen Q S, Tao Y B, Zhang Q L,et al,2022a.The rheological,mechanical and heavy metal leaching properties of cemented paste backfill under the influence of anionic polyacrylamide[J].Chemosphere,286:131630.
Chen X, Shi X Z, Zhou J,et al,2022b.Determination of mechanical,flowability,and microstructural properties of cemented tailings backfill containing rice straw[J].Construction and Building Materials,246:118520.
Deng X J, Zhang J X, Bern K,et al,2017.Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill[J].International Journal of Mineral Processing,168:116-125.
Guo Lijie, Liu Guangsheng, Ma Qinghai,et al,2022.Research progress on mining with backfill technology of underground metalliferous mine[J].Journal of China Coal Society,47(12):4182-4200.
Long Hai, Cheng Tongjun, Xu Bo,et al,2022.Experimental study on the paste filling material of iron tailings improved by fly ash[J].Gold Science and Technology,30(5):724-732.
Han Jing, Wang Zhuoran, Fu You,et al.,2023.Effects of temperature on rheological and strength properties of cemented tailings backfill containing slag based binder[J].Metal Mine,52(4):45-49.
Hu Songtao, Zhu Gengjie, Zhang Juntong,et al,2024.Application research on cemented fine tailings backfill of gold mines in the Jiaodong area[J].Gold Science and Technology,32(3):425-436.
Jiang Guanzhao, Wu Aixiang, Li Hong,2017.High sulfur tailings backfill properties and effect of chemical additives[J].Metal Mine,46(10):171-175.
Jiang H Q, Fall M, Yilmaz E,et al,2020.Effect of mineral admixtures on flow properties of fresh cemented paste backfill:Assessment of time dependency and thixotropy[J].Powder Technology,372:258-266.
Kwan A K H, Ng P L, Huen K Y,2014.Effects of fines content on packing density of fine aggregate in concrete[J].Construction and Building Materials,61:270-277.
Liu Jinzhi, Yin Fei, Gao Ziming,2023.Experimental research and prediction analysis of rheological parameters of tailings backfill with multi-factors[J].Mining and Metallurgical Engineering,43(6):15-19.
Luo Tao, Zhang Liang, Jiang Liangliang,et al,2015.Testing on the rheological properties of the high-density slurry of the full tailings and its pipeline transportation[J].Nonferrous Metals Science and Engineering,6(4):87-90.
Mehdipour I, Khayat K H,2018.Understanding the role of particle packing characteristics in rheophysical properties of cementitious suspensions:A literature review[J].Construction and Building Materials,161:340-353.
Qi C C, Andy F,2019.Cemented paste backfill for mineral tailings management:Review and future perspectives [J].Minerals Engineering,144:1-21.
Ruan Zhu’en, Wu Aixiang, Fu Hao,et al,2023.Influence mechanism of straw fiber on uniaxial compressive strength cemented paste backfill body of sulfur-bearing tailings[J].Journal of Central South University(Science and Technology),54(3):837-848.
Sheng Yuhang, Li Guangbo, Jiang Haiqiang,2020.Effects of superplasticizers and fly ash on rheological properties of cemented tailings backfill[J].Journal of Chongqing University,43(4):55-63.
Tian Yi, Zhao Hu, Wang Shuo,et al,2022.Environmental risk analysis and suggestions for tailings in China[J].China Mining Magazine,31(10):57-61.
Tu Bo, Ji Xiankun, Wang Hailong,et al,2022.Differential analysis of properties of cement based and mining alkali activated cementitious materials[J].Metal Mine,51(10):48-56.
Wang Kun, Yang Peng, Hudson-Edward Karen,et al,2018.Status and development for the prevention and management of tailings dam failure accidents[J].Chinese Journal of Engineering,40(5):526-539.
Wang Xianqing, Wan Wen, Sheng Jia,et al,2024.Research and application of rheological model of graded fine-tailings slurry based on constant shear rate[J].Mining Research and Development,44(6):6-12.
Wu Aixiang, Yang Ying, Cheng Haiyong,et al,2018a.Status and prospects of paste technology in China[J].Chinese Journal of Engineering,40(5):517-525.
Wu Aixiang, Jiang Guanzhao, Wang Yiming,2018b.Review and development trend of new type filling cementing materials in mines[J].Metal Mine,47(3):1-6.
Xu W B, Tian M M, Li Q L,2020a.Time-dependent rheological properties and mechanical performance of fresh cemented tailings backfill containing flocculants[J].Minerals Engineering,145:10604.
Xu W B, Li Q L, Liu B,2020b.Coupled effect of curing temperature and age on compressive behavior,microstructure and ultrasonic properties of cemented tailings backfill[J].Construction and Building Materials,237:117738.
Xu Zefeng, Shi Xiuzhi, Huang Rendong,et al,2024.Study on filling pipeline optimization based on full pipe transportation[J].Gold Science and Technology,32(1):160-169.
Xue Zhenlin, Zhang Youzhi, Bao Yahao,et al,2016.Study on rheological property of unclassified-tailing slurry considering the temperature effect[J].Metal Mine,45(10):35-39.
Yang L, Yilmaz E, Li Junwei,et al,2018.Effect of superplasticizer type and dosage on fluidity and strengt behavior of cemented tailings backfill with different solid contents[J].Construction and Building Materials,187:290-298.
Yilmaz E, Belem T, Bussière B,et al,2011.Relationships bet-ween microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills[J].Cement and Concrete Composites,33(6):702-715.
Yu Runcang,2020.Theory and Engineering Practice of Cemented Backfill in Metal Mine[M].Beijing:Metallurgical Industry Press.
Zhang Lei, Guo Lijie, Xu Wenyuan,et al,2023.Research on crucial technological and material issues of applying fine tailings to mine filling:A review[J].Materials Reports,37(23):102-112.
郭利杰,刘光生,马青海,等,2022.金属矿山充填采矿技术应用研究进展[J].煤炭学报,47(12):4182-4200.
海龙,程同俊,徐博,等,2022.粉煤灰改良铁尾矿膏体充填材料试验研究[J].黄金科学技术,30(5):724-732.
韩静,王卓然,付有,等,2023.温度对矿渣基充填料流变和强度影响试验研究[J].金属矿山,52(4):45-49.
胡松涛,朱庚杰,张军童,等,2024.胶东地区黄金矿山细尾砂胶结充填应用研究[J].黄金科学技术,32(3):425-436.
姜关照,吴爱祥,李红,2017.高硫尾砂充填体性能及化学外加剂对其影响[J].金属矿山,46(10):171-175.
刘金枝,殷菲,高子明,2023.多因素下尾砂充填料浆流变参数试验研究及预测分析[J].矿冶工程,43(6):15-19.
罗涛,张亮,姜亮亮,等,2015.高浓度全尾砂料浆流变特性参数试验及管道输送研究[J].有色金属科学与工程,6(4):87-90.
阮竹恩,吴爱祥,付豪,等,2023.秸秆纤维对含硫尾砂膏体充填体单轴抗压强度的影响机理[J].中南大学学报(自然科学版),54(3):837-848.
盛宇航,李广波,姜海强,2020.减水剂与粉煤灰对全尾砂胶结充填料浆流变性能的影响[J].重庆大学学报,43(4):55-63.
田祎,赵虎,王硕,等,2022.我国尾矿环境风险分析与措施建议[J].中国矿业,31(10):57-61.
涂博,纪宪坤,王海龙,等,2022.泥基和矿用碱激发胶凝材料性能差异化分析[J].金属矿山,51(10):48-56.
王昆,杨鹏, Hudson-Edwards Karen,等,2018.尾矿库溃坝灾害防控现状及发展[J].工程科学学报,40(5):526-539.
王贤情,万文,盛佳,等,2024.基于恒定剪切速率的分级细尾砂浆流变模型研究与应用[J].矿业研究与开发,44(6):6-12.
吴爱祥,杨莹,程海勇,等,2018a.中国膏体技术发展现状与趋势[J].工程科学学报,40(5):517-525.
吴爱祥,姜关照,王贻明,2018b.矿山新型充填胶凝材料概述与发展趋势[J].金属矿山,47(3):1-6.
徐泽峰,史秀志,黄仁东,等,2024.基于满管输送的充填管路优化研究[J].黄金科学技术,32(1):160-169.
薛振林,张友志,鲍亚豪,等,2016.考虑温度影响的全尾砂料浆流变性能研究[J].金属矿山,45(10):35-39.
于润沧,2020.金属矿山胶结充填理论与工程实践[M].北京:冶金工业出版社
张雷,郭利杰,许文远,等,2023.细尾砂在矿山充填应用中关键工艺与材料的研究进展[J].材料导报,37(23):102-112.
[1] 刘伟, 闫晓宇, 刘庆朋, 孙欣然. 根土复合体增强矿区排土场边坡抗剪强度试验研究[J]. 黄金科学技术, 2024, 32(5): 871-881.
[2] 石英, 聂锐洋, 周诗彤, 陆思成, 卿子萱. 含硫酸盐废水对磷石膏胶结充填体材料性能的影响[J]. 黄金科学技术, 2024, 32(3): 416-424.
[3] 胡松涛, 朱庚杰, 张军童, 徐世群, 寇云鹏. 胶东地区黄金矿山细尾砂胶结充填应用研究[J]. 黄金科学技术, 2024, 32(3): 425-436.
[4] 张玉, 刘晓敏, 石怡安, 陈铁林, 王展魁, 陈文海, 孙加奇, 安平生. 动静复合拉拔作用下锚杆结构的破坏机制研究[J]. 黄金科学技术, 2024, 32(3): 481-490.
[5] 李杰林,王京瑶,肖益盖,李小双. 不同应力路径下岩石细观力学性能离散元研究[J]. 黄金科学技术, 2023, 31(1): 102-112.
[6] 杜广盛,陈世江,武海龙. 温度影响下花岗岩宏、细观力学性质演化规律[J]. 黄金科学技术, 2022, 30(6): 935-947.
[7] 徐先锋,邢鹏飞,汪泳,王岁红. 基于L型回弹仪的岩石力学特性试验研究[J]. 黄金科学技术, 2022, 30(4): 550-558.
[8] 刘业繁,石英. 磷石膏胶结充填体动态力学特性研究[J]. 黄金科学技术, 2022, 30(4): 574-584.
[9] 张子洋,曹平,刘智振,肖峰. 泥质粉砂岩蠕变特性及非线性蠕变模型研究[J]. 黄金科学技术, 2022, 30(3): 449-459.
[10] 范永亮, 崔继强, 张元坤, 李凤, 黄春云, 顾元统, 何建元. 混合粗骨料配比对充填体强度及浆体流动性能的影响规律[J]. 黄金科学技术, 2022, 30(2): 263-271.
[11] 林斌,田竹华,陈雨漫. 含水率对重塑红黏土反复抗剪强度影响试验研究[J]. 黄金科学技术, 2021, 29(5): 680-689.
[12] 李柏锦,李响,王彦,尹土兵,李夕兵. 温度冲击对花岗岩动态拉伸力学性能的影响[J]. 黄金科学技术, 2021, 29(4): 545-554.
[13] 海龙,徐博,赵鑫. 建筑垃圾制备膏体充填材料骨料级配优化[J]. 黄金科学技术, 2021, 29(4): 573-581.
[14] 赵鑫,海龙,徐博,程同俊. 电厂灰渣制备井下膏体充填材料试验研究[J]. 黄金科学技术, 2021, 29(4): 582-592.
[15] 杜坤,杨颂歌,苏睿,杨成志,王少锋. 不同应力条件下硬岩强度与破裂特性试验研究[J]. 黄金科学技术, 2021, 29(3): 372-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!