img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (4): 654-665.doi: 10.11872/j.issn.1005-2518.2024.04.080

• 采选技术与矿山管理 • 上一篇    下一篇

基于无人机航测的自然崩落法采矿地表塌陷规律研究

王史文1(),王晟1,凌炜佳2,朱忠华2(),杨鑫源1,沙文忠1,杨家宏1   

  1. 1.云南迪庆有色金属有限责任公司,云南 昆明 650002
    2.南华大学资源环境与安全工程学院,湖南 衡阳 421001
  • 收稿日期:2024-03-25 修回日期:2024-05-13 出版日期:2024-08-31 发布日期:2024-08-27
  • 通讯作者: 朱忠华 E-mail:417541855@qq.com;zzhnihao545@126.com
  • 作者简介:王史文(1982-),男,云南丽江人,工程师,从事矿山测绘与技术管理工作。417541855@qq.com
  • 基金资助:
    国家自然科学基金项目“水—力耦合作用下卸荷诱导的裂隙体破断实验与灾变机理研究”(51704168);2021年湖南省教育厅青年项目“砂岩型铀矿床全矿域数字化渗透模型构建方法”(21B0446);中铝云南迪庆有色金属有限责任公司科研项目“普朗铜矿采矿自然崩落放矿与地表塌陷规律研究”联合资助

Study on Surface Subsidence Regularity of Block Caving Mining Method Based on UAV Aerial Survey

Shiwen WANG1(),Sheng WANG1,Weijia LING2,Zhonghua ZHU2(),Xinyuan YANG1,Wenzhong SHA1,Jiahong YANG1   

  1. 1.Yunnan Diqing Nonferrous Metal Co. , Ltd. , Kunming 650002, Yunnan, China
    2.School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, Hunan, China
  • Received:2024-03-25 Revised:2024-05-13 Online:2024-08-31 Published:2024-08-27
  • Contact: Zhonghua ZHU E-mail:417541855@qq.com;zzhnihao545@126.com

摘要:

自然崩落采矿法会造成一定范围的地表塌陷,是矿山的重大安全隐患。无人机航测在大面积复杂地表监测方面具有安全性好、作业流程简单及精度高的优点,是地表塌陷监测和三维建模的优选技术手段。针对国内最大的自然崩落法矿山,运用无人机航测对该矿山自然崩落法开采诱发的地表塌陷进行非接触监测,开发了无人机航测技术流程,提出了基于无人机航测的地表塌陷三维建模方法,以及三维建模精度分析方法。通过构建三维模型,进行地表塌陷影响区范围分析和塌陷影响区剖面数据分析以及地表塌陷理论分析,研究该矿山2022年3月至2023年3月塌陷区的变化,得到塌陷区变化特点和规律;采用概率积分法对地表塌陷规律进行预测,得出该矿山地表塌陷概率积分法预测值与实测值之间的误差小于0.18 m。研究结果可为该矿山地表治理和泥石流防治提供依据。

关键词: 自然崩落法, 地表塌陷, 非接触监测, 无人机航测, 倾斜摄影测量, 三维建模

Abstract:

The block caving method is known to result in a specific range of surface subsidence,which is a major safety risk in mining operations.UAV aerial survey technology offers numerous advantages,including enhanced safety,simple operation process and high precision in monitoring large and complex surface areas. Therefore,this study concentrates on the largest block caving mine in China,employing UAV aerial survey techniques to remotely monitor surface subsidence caused by block caving mining methods.The development of UAV aerial survey technology has led to the proposal of a 3D modeling method for surface subsidence based on UAV aerial survey.An accuracy analysis method for the 3D modeling process was also presented.By cons-tructing 3D models,analyzing the extent of surface subsidence affected areas,examining profile data of subsidence affected areas,and conducting theoretical analysis,this study investigates changes in the subsidence area of the mine from March 2022 to March 2023. Based on an analysis of the subsidence range and orebody profile within the vein,as well as predictions of surface subsidence using the probability integral method (PIM),it can be inferred that the extent of active subsidence is influenced by the distribution of active drawpoints. Furthermore,by utilizing PIM to forecast subsidence values,a comparison between the calculated and actual subsidence amounts at the Pulang copper mine,the maximum error is less than 0.18 m. The prediction of surface subsidence patterns in this mine can be achieved through the application of the probability integral method,which is grounded in the principles of stochastic medium theory. Utilizing the PIM allows for the anticipation of surface subsidence regularity,thereby facilitating effective surface treatment and mitigation of debris flow within the mine. By integrating 3D modeling with surface subsidence patterns,various recommendations can be formulated for the management of subsidence pits and the development of a drawing plan for the mine.

Key words: block caving method, surface subsidence, noncontact monitoring, UAV(unmanned aerial vehicle)aerial survey, oblique photogrammetry, 3D modeling

中图分类号: 

  • TD325

图1

空中三角测量示意图"

图2

无人机航测流程图"

图3

2023年6月底普朗铜矿地表塌陷区"

图4

相控点示意图"

图5

无人机E2000S"

图6

航线布设"

表1

普朗铜矿地表监测检查点高程与平面定位精度"

检查点编号Dx/cmDy/cmDz/cm
Pt0-0.9088-2.71283.2440
Pt11.26290.31611.3058
Pt2-1.37781.7679-0.6247
Pt30.0986-1.36561.3926
Pt40.4471-1.36150.4562
Pt5-2.9097-1.36152.1513
Pt61.0753-0.1369-2.1694
Pt7-0.2191-3.71320.5928
Pt80.03330.40442.0000
Pt10-0.10492.0767-1.6271
Pt114.07553.3975-1.4745

图7

三维建模流程图"

图8

塌陷区正射影像图"

图9

塌陷影响区范围线(2022年3月28日至2023年3月22日)"

图10

地表塌陷区和3720出矿水平复合图"

图11

3720出矿水平布置图(a)和局部放大图(b)"

图12

部分剖面塌陷区曲线"

图13

塌陷区局部地表图"

图14

真实沉陷值与计算沉陷值对比"

图15

普朗铜矿西北部塌陷范围及放矿点分布"

表2

普朗铜矿地表塌陷量精度评定"

测点编号计算沉陷值/m真实沉陷值/m误差值/m
T12.6942.8720.178
T21.6601.7110.051
T30.5840.6150.031
T40.2130.2440.031
T51.5301.5930.063
T61.5291.6700.141
T73.1333.2300.097
T83.2743.3460.072
T93.2733.3220.049
T100.7200.7670.047
T114.9865.1320.146
T120.8890.9300.041
Bian H F, Zhang S B, Zhang Q Z,et al,2014.Monitoring large-area mining subsidence by GNSS based on IGS stations[J].Transactions of Nonferrous Metals Society of China,24(2):514-519.
Cao Yong,2023.Study on the Influence Mechanism and Prevention Measures of Stress Concentration on Surrounding Rock Stability in Block Caving Undercutting[D].Beijing:University of Science and Technology Beijing.
Chen Y, Yu S, Tao Q,et al,2021.Accuracy verification and correction of D-InSAR and SBAS-InSAR in monitoring mining surface subsidence[J].Remote Sensing,13(21):4365.
Coates D F,1981.Rock Mechanics Principles[M].Ottawa:Energy,Mines,and Resources Canada.
Deng Bo, Zhang Hui, Bai Jun,et al,2022.Hazard evaluation of the slope in Shenzhen based on airborne LiDAR data[J].Geomatics and Information Science of Wuhan University,49(8):1377-1391.
Li Hanbing, Liu Ning, Wang Pan,et al,2022.Influence of landmarks on the foundation pit monitoring by digital close-range photogrammetry[J].Journal of Hefei University of Technology(Natural Science Edition),45(8):1066-1071.
Li Tao,2017.Application and accuracy analysis of Sirius UAV aerial photography system in complex topographic survey[J].Bulletin of Surveying and Mapping,(12):146-148,152.
Lin Fang, Feng Xiaojiu,2023.Study on surface displacement law of a mine in Jining based on probability integral method[J].Metal Mine,52(11):198-204.
National Administration of Surveying,Mapping and Geoinformation,2013. Specifications for the digital products of three-dimensional model on geographic information: [S].Beijing:National Administration of Surveying,Mapping and Geographic Information.
Quan Bin, Liu Eryang,2010.The application of pyramid image structure in image match[J].Bulletin of Surveying and Mapping,396(3):10-12,34.
Quan Changwen, Li Zhenghong, Pang Baining,et al,2023.Application of UAV image matching point cloud in the monitoring of illegal land and illegal construction[J].Bulletin of Surveying and Mapping,(4):111-114.
Shen Nanshan, Gu Xiaochun, Yin Shenghua,2009.Present situation of block caving mining technology at home and abroad[J].Mining Technology,9(4):1-4.
Song Xugen, Liu Xiumin, Chen Congxin,et al,2018.Study on mechanism of surface collapse and ground deformation in western mined area of Chengchao iron mine[J].Chinese Journal of Rock Mechanics and Engineering,37(Supp.2):4262-4273.
Tang Yemao, Zeng Xiaowen,2010.Discussion on the application of block caving mining method[J].Nonferrous Metals(Mining Section),62(3):9-11.
Woo K S, Eberhardt E, Elmo D,et al,2013.Empirical investigation and characterization of surface subsidence related to block cave mining[J].International Journal of Rock Mechanics and Mining Sciences,61:31-42.
Wu Fei, Huang Yinghua, Hu Jingyun,2023.Research and practice of high and steep slope deformation measurement accuracy based on measuring robot[J].Mining Research and Development,43(2):149-156.
Xiao Wei, Yang Songlin, Han Xingjin,et al,2023.Research on refraction correction of automatic dam deformation by measuring monitoring with robotic total station[J].Water Resources and Power,41(4):110-113.
Yang Xiaoyu,2016.Application of measuring robot in surface dynamic deformation monitoring of mining[J].Safety in Coal Mine,47(5):137-140.
Yu Xueyi, Zhang Enqiang,2010.Mining Damage[M].Beijing:Coal Industry Press.
Zha Jianfeng, Zhu Pengcheng, Wu Dejun,et al,2023.UAV aerial triangulation:Point error distributions and the influencing mechanisms of ground control points on its accuracy[J].Coal Geology and Exploration,51(7):151-161.
Zhang Chunsen, Zhu Shihuan,ZangYufu,et al,2017.GPS-supported bundle adjustment method of UAV by considering exposure delay[J].Acta Geodaetica et Cartographica Sinica,46(5):565-572.
Zhang Wenlong, Zhang Tongkang, Zhang Fan,et al,2022.Identification of ground subsidence in goaf of Hancheng mining area based on PS-InSAR and DS-InSAR[J].Safety in Coal Mines,53(8):194-199.
Zhang Yahong,2023.3D urban modeling technology based on oblique image and airborne LiDAR[J].Geospatial Information,21(2):89-92.
Zheng J, Yao W, Lin X,et al,2022.An accurate digital subsidence model for deformation detection of coal mining areas using a UAV-based LiDAR[J].Remote Sensing,14(2):421.
Zhu Zhonghua,2015.Research on Key Technologies of Integration System of Block Caving Ore Drawing Optimization Control and Intelligent Management[D].Changsha:Central South University.
Zhu Zhonghua, Dai Bibo, Tao Ganqiang,et al,2019.Research and application overview of block caving method[J].Metal Mine,48(12):1-11.
曹永,2023.自然崩落法拉底应力集中对围岩稳定性影响机理及防治措施研究[D].北京:北京科技大学.
邓博,张会,柏君,等,2024.利用机载LiDAR的深圳斜坡类地质灾害危险性评价[J].武汉大学学报(信息科学版),49(8):1377-1391.
国家测绘地理信息局,2013. 三维地理信息模型数据产品规范: [S].北京:国家测绘地理信息局.
李寒冰,刘宁,王盼,等,2022.标志点对数字近景摄影基坑监测精度影响研究[J].合肥工业大学学报(自然科学版),45(8):1066-1071.
李涛,2017.天狼星无人机航摄系统在复杂地形测量中的应用与精度分析[J].测绘通报,(12):146-148,152.
林芳,冯晓九,2023.基于概率积分法的济宁某矿地表位移规律研究[J].金属矿山,52(11):198-204.
全斌,刘二洋,2010.金字塔影像结构在影像匹配中的应用[J].测绘通报,396(3):10-12,34.
全昌文,李正洪,庞百宁,等,2023.无人机影像密集匹配点云在违法占地和违法建筑监测中的应用[J].测绘通报,(4):111-114.
沈南山,顾晓春,尹升华,2009.国内外自然崩落采矿法技术现状[J].采矿技术,9(4):1-4.
宋许根,刘秀敏,陈从新,等,2018.程潮铁矿西区采空区地表塌陷机制与变形规律初探[J].岩石力学与工程学报,37(增2):4262-4273.
唐业茂,曾晓文,2010.自然崩落采矿法技术应用探讨[J].有色金属(矿山部分),62(3):9-11.
吴飞,黄英华,胡静云,2023.基于测量机器人的高陡边坡变形测量精度研究与实践[J].矿业研究与开发,43(2):149-156.
肖维,杨松林,韩行进,等,2023.测量机器人大坝变形自动化监测中的大气折光修正研究[J].水电能源科学,41(4):110-113.
杨晓玉,2016.测量机器人在矿区地表动态变形监测中的应用[J].煤矿安全,47(5):137-140.
余学义,张恩强,2010.开采损害学[M].北京:煤炭工业出版社.
查剑锋,朱鹏程,吴德军,等,2023.无人机航测空三点误差分布及像控点对其精度影响机理[J].煤田地质与勘探,51(7):151-161.
张春森,朱师欢,臧玉府,等,2017.顾及曝光延迟的无人机GPS辅助光束法平差方法[J].测绘学报,46(5):565-572.
张文龙,张童康,张帆,2022.结合PS-InSAR和DS-InSAR的韩城矿区采空区地面塌陷识别[J].煤矿安全,53(8):194-199.
张亚红,2023.倾斜影像和机载LiDAR融合的城市三维建模技术[J].地理空间信息,21(2):89-92.
朱忠华,2015.自然崩落法放矿优化控制与智能化管理关键技术研究[D].长沙:中南大学.
朱忠华,代碧波,陶干强,等,2019.自然崩落采矿法研究及应用[J].金属矿山,48(12):1-11.
[1] 张兵兵,喻鸿,张中雷,李战军,崔晓荣. 露天矿山采剥施工的数字化精细管理实践[J]. 黄金科学技术, 2019, 27(4): 621-628.
[2] 刘港,马凤山,赵海军,郭捷,侯成录,李威. 三山岛金矿西山矿区主要透水中段裂隙分布规律与三维建模[J]. 黄金科学技术, 2019, 27(2): 199-206.
[3] 方传峰,王晋淼,李剡兵,贾明涛. 基于PFC2D-DFN的自然崩落法数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 189-198.
[4] 谷中元,周科平. 基于蠕变试验的浅埋空区群结构时变力学特性研究[J]. 黄金科学技术, 2018, 26(4): 511-519.
[5] 荆永滨, 赵新涛, 冯兴隆. 节理岩体矿岩块度三维模拟研究[J]. 黄金科学技术, 2018, 26(3): 357-364.
[6] 朱忠华,王李管,陶干强,蒲成志. 自然崩落法一体化放矿优化控制与智能化管理系统研制[J]. 黄金科学技术, 2017, 25(6): 83-91.
[7] 毕林,赵辉,杨新锋 . DIMINE填挖方量计算原理与方法研究[J]. 黄金科学技术, 2017, 25(3): 108-115.
[8] 朱忠华,王李管,谭正华,陈建宏. 三维平台下基于资源价值模型的自然崩落法放矿方案优化[J]. 黄金科学技术, 2016, 24(1): 80-85.
[9] 罗周全,秦亚光,周吉明. 采空区三维可视化集成系统CAD交互接口研发[J]. 黄金科学技术, 2015, 23(5): 41-46.
[10] 曾庆田,刘科伟,严体,王李管. 基于多数值模拟方法联合的自然崩落法开采研究[J]. 黄金科学技术, 2015, 23(1): 66-73.
[11] 白复锌, 王善功, 安智海. 地下矿山开采三维可视化系统在鑫汇金矿的应用[J]. J4, 2011, 19(1): 55-57.
[12] 王培月,王谦源. 玲珑金矿东山塌陷区的锚注联合治理[J]. J4, 2004, 12(6): 27-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!