img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (5): 749-767.doi: 10.11872/j.issn.1005-2518.2024.05.140

• 特约专栏 • 上一篇    下一篇

胶东三山岛断裂带金矿床蚀变矿物勘查标识

李健1(),宋明春2(),王昌伟3,王润生4,雷鸣1,崔庆意1,李杰2,李世勇5   

  1. 1.山东理工大学资源与环境工程学院,山东 淄博 255000
    2.河北省战略性关键矿产资源重点实验室,河北地质大学地球科学学院,河北 石家庄 050031
    3.山东省正元地质资源勘查有限责任公司,山东 淄博 255000
    4.山东省物化探勘查院,山东 济南 250013
    5.山东省核工业二七三地质大队,山东 烟台 264000
  • 收稿日期:2024-05-22 修回日期:2024-07-23 出版日期:2024-10-31 发布日期:2024-09-19
  • 通讯作者: 宋明春 E-mail:jianli@sdut.edu.cn;mingchuns@163.com
  • 作者简介:李健(1993-),男,内蒙古呼伦贝尔人,副教授,硕士生导师,从事矿床学研究工作。jianli@sdut.edu.cn
  • 基金资助:
    国家自然科学基金NSFC-山东省联合基金项目“胶东深部金矿断裂控矿机理”(U2006201);山东省自然科学基金项目“胶东半岛东部岩浆活动与金成矿作用的响应——以金青顶矿床为例”(ZR2021QD056);河北省人才项目“冀北地区金成矿系统及深部找矿技术”(HBQZYCXY0010)

Exploration Indicators of Altered Minerals of Gold Deposits in the Sanshandao Fault Zone,Jiaodong Peninsula

Jian LI1(),Mingchun SONG2(),Changwei WANG3,Runsheng WANG4,Ming LEI1,Qingyi CUI1,Jie LI2,Shiyong Li5   

  1. 1.School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
    2.Hebei Key Laboratory of Strategic Critical Mineral Resources, College of Earth Sciences, Hebei GEO University, Shijiazhuang 050031, Hebei, China
    3.Shandong Zhengyuan Geological Resources Exploration Co. , Ltd. , Zibo 255000, Shandong, China
    4.Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, Shandong, China
    5.Shandong Province Nuclear Industry Geological Group 273, Yantai 264000, Shandong, China
  • Received:2024-05-22 Revised:2024-07-23 Online:2024-10-31 Published:2024-09-19
  • Contact: Mingchun SONG E-mail:jianli@sdut.edu.cn;mingchuns@163.com

摘要:

三山岛断裂带蚀变岩型金矿床控矿断裂产状变化部位含矿性存在差异,使得矿体不连续,勘查标识不明确。通过对三山岛北部海域金矿床30号勘探线的多个钻孔和三山岛井下坑道进行系统编录和样品采集,研究矿物共生组合与矿脉之间的穿切关系。研究表明:北部海域金矿床可划分为4个成矿阶段,即石英—黄铁矿—钾长石阶段(Ⅰ)、石英—黄铁矿—黄铜矿—自然金阶段(Ⅱ)、石英—黄铁矿—方铅矿—闪锌矿—自然金阶段(Ⅲ)和贫矿菱铁矿—方解石阶段(Ⅳ),其中Ⅱ和Ⅲ阶段是金的主要成矿阶段。利用短波红外光谱对控矿断裂含矿和贫矿部位样品进行分析,发现蚀变矿物组成、Al-OH吸收峰位和结晶度(IC)等存在明显差异,高的Pos2200和IC值与金矿体之间存在明确的正相关关系。对各钻孔的品位数据进行统计分析后,引入机器学习算法进行分析,强调IC值具有更高的权重影响。黄铁矿微量元素研究显示:As、Pb、Bi、Te和Sb等元素与Au元素含量之间具有显著正相关性。由此,基于断裂产状、短波红外光谱指标和黄铁矿元素含量等变化情况,建立了全新的勘查标识,对实际找矿勘查工作具有指导意义。

关键词: 短波红外光谱分析, 勘查标识, 断裂控矿模式, 三山岛断裂, 胶东半岛

Abstract:

The Jiaodong Peninsula represents the largest gold orefield in China and ranks as the third largest globally,with orebodies predominantly controlled by fault structures.The mineralization of gold deposits within the Sanshandao fault zone exhibits variability attributable to alterations in the controlling fault structures,leading to disparities in ore body continuity and ambiguous exploration indicators.This study systematically cataloged and sampled multiple drill holes and underground tunnels along exploration line 30 in the Beibuhaiyu and Sanshandao gold deposits.Based on the paragenetic associations of minerals and the cross-cutting relationships among ore veins,the gold deposits in the northern sea area can be categorized into four distinct metallogenic stages:quartz-pyrite-potassium feldspar(stage Ⅰ),quartz-pyrite-chalcopyrite-native gold(stage Ⅱ),quartz-pyrite-galena-sphalerite-native gold(stage Ⅲ),and barren siderite-calcite(stage Ⅳ).Notably,stage Ⅱ and stage Ⅲ represent the primary metallogenic phases for native gold.The analysis of ore-bearing and barren sections of controlling faults through shortwave infrared spectroscopy has demonstrated substantial differences in alteration mineral composition,Al-OH absorption peak positions,and crystallinity index (IC).Notably,elevated Pos2200 and IC values exhibit a strong positive correlation with gold mineralization.Furthermore,statistical evaluation of grade data from multiple drill holes,augmented by machine learning algorithms,underscores the significant influence of IC values.The analysis of trace elements in pyrite revealed substantial positive correlations among elements including arsenic(As),lead(Pb),bismuth(Bi),tellurium(Te),antimony(Sb),and,gold(Au).Consequently,this study has established a novel exploration indicator grounded in variations in fault attitude,shortwave infrared spectroscopy markers,and pyrite elemental,commposition.This indicator holds considerable significance for informing practical prospecting efforts.

Key words: shortwave infrared spectroscopy analysis, exploration identification, fault-controlled mineralization model, Sanshandao fault, Jiaodong Peninsula

中图分类号: 

  • P618.51

图1

胶东半岛地质背景及金矿床分布图(修改自Song et al.,2020)(a)中国东部地质简图;(b)胶东半岛地质简图及金矿床分布;1.断裂;2.玲珑岩套;3.区域断裂;4.郭家岭岩套;5.苏鲁造山带;6.伟德山岩套;7.前寒武纪岩石;8.崂山岩套;9.中生代花岗岩;10.白垩纪正长岩;11.中生代盆地;12.三叠纪花岗岩"

图2

北部海域金矿床位置、地质图和勘探线剖面(a)三山岛断裂带地质简图;(b)北部海域金矿床地质图;(c)30号勘探线剖面图;图(b):1.郭家岭花岗岩;2.玲珑花岗岩;3.变辉长岩;4.黄铁绢英岩带;5.金矿体;6.断裂;7.勘查线;8.钻孔及编号;图(c):1.第四系;2.玲珑花岗岩;3.前寒武纪岩石;4.黄铁绢英岩带;5.金矿体;6.煌斑岩/辉绿岩脉;7.钻孔及编号"

图3

北部海域金矿床不同成矿阶段典型矿物组合特征(a)~(c)Ⅰ阶段;(c)、(d)Ⅱ阶段; (d)~(i)Ⅲ阶段; (h)Ⅳ阶段;Kfs-钾长石;Qtz-石英;Py-黄铁矿;Ccp-黄铜矿;Gn-方铅矿;Sp-闪锌矿;Sd-菱铁矿"

图4

北部海域金矿床典型矿物组合显微特征Chl-绿泥石;Cab-碳酸盐;Mus-白云母;Ser-绢云母;Pl-斜长石;Qtz-石英;Py-黄铁矿;Ccp-黄铜矿;Gn-方铅矿;Sp-闪锌矿;Sd-菱铁矿;Po-磁黄铁矿;Gl-自然金"

图5

北部海域金矿床30号勘探线典型钻孔样品采集位置图1.第四系;2.二长花岗岩;3.变辉长岩;4.变辉长岩(弱绢英岩化);5.变辉长岩(弱黄铁绢英岩化);6.硅化碎裂岩;7.辉绿玢岩;8.似斑状花岗闪长岩;9.绢英岩化花岗岩;10.黄铁绢英岩化花岗质碎裂岩;11.黄铁绢英岩化碎裂岩;12.矿体;13.石英脉;14.采样位置"

图6

北部海域金矿床代表性光谱曲线"

图7

北部海域金矿床短波红外光谱蚀变矿物、Al-OH吸收峰位和结晶度分布特征"

图8

北部海域金矿床钻孔短波红外光谱分析详细统计结果"

图9

北部海域金矿床钻孔中各地质体Al-OH吸收峰位和结晶度统计结果"

图10

北部海域金矿床钻孔蚀变矿物及分带特征"

表1

北部海域金矿床控矿断裂陡倾段和缓倾段对比"

差异性特征控矿断裂由陡变缓段控矿断裂陡倾段
断裂形态较缓较陡
断裂产状倾角35°~43°倾角75°~85°
断层泥发育情况发育,厚度为0.05~0.5 m不发育
构造岩带宽度40~400 m<20 m
破碎程度
碎裂岩组合黄铁绢英岩化碎裂岩+黄铁绢英岩化花岗质碎裂岩+绢英岩化碎裂岩绢英岩化花岗岩+弱绢英岩化碎裂岩
伊利石结晶度≥2.0<2.0
Al-OH吸收峰位≥2 205 nm<2 205 nm
硫化物组合稠密浸染状/金脉状的石英+黄铁矿±多金属化物稀浸染状/细脉状的石英±黄铁矿
蚀变矿物组合伊利石+白云母±碳酸盐矿物±绿泥石伊利石+白云母+黏土矿物+碳酸盐矿物

图11

三山岛金矿床黄铁矿LA-ICP-MS面扫描数据相关性图解"

图12

机器学习模型结果及其分析图(a)ROC曲线和AUC值;(b)不同模型的混淆矩阵;(c)不同模型的特征SHAP值图注:ROC曲线是一种用于衡量二分类模型性能的图形化工具,其以真阳性率(True Positive Rate,又称敏感度)为纵轴,假阳性率(False Positive Rate)为横轴,将不同阈值下的分类结果可视化展现出来。在ROC曲线上,理想情况下,模型的曲线越接近左上角(0,1)点,表示模型的性能越好。AUC(Area Under the Curve)是ROC曲线下面积的数值,代表了分类模型的性能。AUC的取值范围在0~1之间,数值越接近1,代表模型的性能越优秀。AUC为0.5时,代表模型的分类能力等同于随机猜测,而当AUC为1时,表示模型完美预测了样本的类别。SHAP图中,从垂直顶部到底部的顺序表示特征的重要性,红色表示高特征值,蓝色表示低特征值,水平轴表示特征值对输出的影响"

图13

北部海域金矿床30号勘探线剖面图(显示Pos2200和IC等值线)1.第四系;2.玲珑花岗岩;3.前寒武纪岩石;4.黄铁绢英岩带;5.金矿体;6.煌斑岩/辉绿岩脉;7.钻孔及编号"

图14

北部海域金矿床30号勘探线地质剖面图(显示Pos2200、IC、伊利石和白云母百分含量等值线)"

Ali J, Khan R, Ahmad N,et al,2012.Random forests and decision trees[J].International Journal of Computer Science Issues,9(5):272-278.
Augustin J, Gaboury D,2019.Multi-stage and multi-sourced fluid and gold in the formation of orogenic gold deposits in the world-class Mana district of Burkina Faso-Revealed by LA-ICP-MS analysis of pyrites and arsenopyrites[J].Ore Geology Reviews,104:495-521.
Cai W Y, Song M C, Santosh M,et al,2024.The gold-telluride connection:Evidence for multiple fluid pulses in the Jinqingding telluride-rich gold deposit of Jiaodong Peninsula,Eastern China[J].Geoscience Frontiers,15:101795.
Chen Huayong, Zhang Shitao, Chu Gaobin,et al,2019.The short wave infrared(SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits,Edong ore district,eastern China[J].Acta Petrologica Sinica,35(12):3629-3643.
Ciobanu C L, Cook N J, Spry P G,2006.Preface-special issue:Telluride and selenides minerals in gold deposits—How and why?[J].Mineral Petrol,87:163-169.
Deditius A P, Reich M, Kesler S E,et al,2014.The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J].Geochimica et Cosmochimica Acta,140:644-670.
Deditius A P, Utsunomiya S, Ewing R C,et al,2009.Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite[J].American Mineralogist,94 (2/3):391-394.
Deditius A P, Utsunomiya S, Reich M,et al,2011.Trace metal nanoparticles in pyrite[J].Ore Geology Reviews,42:32-46.
Deng J, Yang L Q, Groves D I,et al,2020.An integrated mineral system model for the gold deposits of the giant Jiaodong province,eastern China[J].Earth-Science Review,208:103274.
Deng Jun, Wang Qingfei, Zhang Liang,2023.Metallogenetic model of Jiaodong-type gold deposits,eastern China[J].Science China Earth Sciences,53(10):2323-2347.
Dong L L, Yang Z M, Song M C,et al,2023.Petrogenesis of mesozoic magmatic suites in the Jiaodong Peninsula:Implications for crust-mantle interactions and decratonization[J].Lithosphere,(1):6226908.
Frost B R, Mavrogenes J A, Tomkins A G,2002.Partial melting of sulphide ore deposits during medium- and high-grade metamorphism[J].The Canadian Mineralogist,40:1-18.
Goss S C, Wilde S A, Wu F,et al,2010.The age,isotopic signature and significance of the youngest mesozoic granitoids in the Jiaodong terrane,Shandong Province,north China craton[J].Lithos,120:309-326.
Groves D I, Goldfarb R J, Gebre-Mariam M,et al,1998.Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J].Ore Geology Reviews,13:7-27.
Groves D I, Santosh M,2016.The giant Jiaodong gold province:The key to a unified model for orogenic gold deposits?[J].Geoscience Frontiers,7:409-417.
Groves D I, Santosh M, Goldfarb R J,et al,2018.Structural geometry of orogenic gold deposits:Implications for exploration for world-class and giant deposits[J].Geoscience Frontiers,9:1163-1177.
Hastie E, Kontak D J, Lafrance B,2020.Gold remobilization:Insights from gold deposits in the Archean Swayze Greenstone Belt,Abitibi Subprovince,Canada[J].Economic Geology,115:241-277.
Huo Guang, Song Guozheng, Yan Chunming,et al,2019.Characteristics of tectonic superimposed halo and deep prospecting prediction in Shaling gold deposit in Jiaodong Peninsula[J].Shandong Land and Resources,35(9):16-22.
Jiang P, Yang K F, Fan H R,et al,2016.Titanitescale insights into multi-stage magma mixing in early cretaceous of NW Jiaodong terrane,North China Craton[J].Lithos,258/259:197-214.
Keith M, Smith D J, Jenkin G R T,et al,2018.A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits:Insights into ore-forming processes[J].Ore Geology Reviews,96:269-282.
Li J, Wang C, Song M,2023a.Petrogenesis of the Laoshan suite in the Jiaodong Peninsula(Eastern China):An oxidized low Ba-Sr A1-type granite[J].Minerals,13:1012.
Li J, Wang K Y, Cai W Y,et al,2020.Triassic gold-silver metallogenesis in Qingchengzi orefield,North China Craton:Perspective from fluid inclusions,REE and H-O-S-Pb isotope systematics[J].Ore Geology Reviews,121:103567.
Li J, Yang Z M, Song M C,et al,2023b.Gold remobilization of the Sanshandao gold deposit,Jiaodong Peninsula,Eastern China:Perspective from in-situ sulfide trace elements and sulfur isotopes[J].Ore Geology Reviews,158:105505.
Li Jian, Song Mingchun, Yu Jiantao,et al,2022.Genesis of Jinqingding gold deposit in eastern Jiaodong Peninsula:Constrain from trace elements of sulfide ore and wall-rock[J].Geological Bulletin of China,41(6) :1010-1022.
Li L, Li C,Li,Q,et al,2022.Indicators of decratonic gold mineralization in the North China Craton[J].Earth-Science Reviews,228:103995.
Li L, Santosh M, Li S R,2015.The “Jiaodong type” gold deposits:Characteristics,origin and prospecting[J].Ore Geology Reviews,65:589-611.
Li Shengrong,2013.On the dissemination and development of genetic mineralogy in China[J].Earth Science Frontiers,20(3):46-54.
Li Shengrong, Chen Guangyuan,2001.On the discipline system of modern mineralogy[J].Geoscience,(2):157-160.
Li Shengrong, Guo Pu, Zeng Yongjie,et al,2021.Background,Process and Evaluation of Gold Enrichment on Both Sides of Tanlu Fault in Shandong Province[M].Beijing:Geology Press.
Li X C, Fan H R, Santosh M,et al,2012.An evolving magma chamber within extending lithosphere:An integrated geochemical,isotopic and zircon U-Pb geochronological study of the Gushan granite,eastern North China Craton[J].Journal of Asian Earth Sciences,50:27-43.
Liu Jiajun, Wang Dazhao, Zhai Degao,et al,2021.Super-enrichment mechanisms of precious metals by low-melting point copper-philic element(LMCE) melts[J].Acta Petrologica Sinica,37(9) :2629-2656.
Ma L, Jiang S Y, Dai B Z,et al,2013.Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula,eastern China:Zircon U-Pb geochronological geochemical and Sr-Nd-Hf isotopic evidence[J].Lithos,162/163:175-194.
MacLean L C W, Tyliszczak T, Gilbert P U P A,et al,2008.A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm[J].Geobiology,6:471-480.
Peng H W, Fan H R, Liu X,et al,2021.New insights into the control of visible gold fineness and deposition:A case study of the Sanshandao gold deposit,Jiaodong,China[J].American Mineralogist,106:135-149.
Reich M, Deditius A, Chryssoulis S,et al,2013.Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:A SIMS/EMPA trace element study[J].Geochimica et Cosmochimica Acta,104:42-62.
Reich M, Kesler S E, Utsunomiya S,et al,2005.Solubility of gold in arsenian pyrite[J].Geochimica et Cosmochimica Acta,69:2781-2796.
Shao Xuewei, Peng Yongming, Wang Gongwen,et al,2021.Application of SWIR,XRF and thermoelectricity analysis of pyrite in deep prospecting in the Xincheng gold orefield,Jiaodong Peninsula[J].Earth Science Frontiers,28(3):236-251.
Song Mingchun, Wang Hongjun, Liu Hongbo,et al,2024.Deep characteristics of ore-controlling faults in Jiaoxibei gold deposits and its implications for prospecting:Evidence from geophysical surveys[J].Geology in China,51(1):1-16.
Song M C, Ding Z J, Zhang J J,et al,2021.Geology and mineralization of the Sanshandao supergiant gold deposit (1200 t) in the Jiaodong Peninsula,China:A review[J].China Geology,4:686-719.
Song M C, Zhou J B, Song Y X,et al,2020.Mesozoic Weideshan granitoid suite and its relationship to large-scale gold mineralization in the Jiaodong Peninsula,China[J].Geological Journal,55:5703-5724.
Song Mingchun, Lin Shaoyi, Yang Liqiang,et al,2020.Metallogenic model of Jiaodong Peninsula gold deposits[J].Mineral Deposits,39(2):215-236.
Song Mingchun, Song Yingxin, Ding Zhengjiang,et al,2018.Jiaodong gold deposits:Essential characteristics and major controversy[J].Gold Science and Technology,26(4):406-422.
Song Mingchun, Song Yingxin, Li Jie,et al,2023.Thermal doming-extension metallogenic system of Jiaodong type gold deposits[J].Acta Petrologica Sinica,39(5):1241-1260.
Song Mingchun, Yi Pihou, Xu Junxiang,et al,2012.A step metallogenetic model for gold deposits in the northwestern Shandong Peninsula,China[J].Science China Earth Science,42(7):992-1000.
Song Mingchun, Zhang Junjin, Zhang Pijian,et al,2015.Discovery and tectonic-magmatic background of superlarge gold deposit in offshore of northern Sanshandao Shandong Peninsula China[J].Acta Geologica Sinica,89(2):365-383.
Song Yingxin,2017.Short wave infrared spectral characteristics of alteration minerals of gold deposit in the northern sea of Sanshandao and its implications for deep prospecting[J].Gold Science and Technology,25(3):54-60.
Tian Feng, Leng Chengbiao, Zhang Xingchun,et al,2019.Application of short⁃wave infrared spectroscopy in Gangjiang porphyry Cu⁃Mo deposit in Nimu ore field,Tibet[J].Earth Science,44(6):2143-2154.
Tooth B, Ciobanu C L, Green L,et al,2011.Bimelt formation and gold scavenging from hydrothermal fluids:An experimental study[J].Geochimica et Cosmochimica Acta,75:5423-5443.
Voute F, Hagemann S G, Evans N J,et al,2019.Sulfur isotopes,trace element,and textural analyses of pyrite,arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district,Peru:implication for paragenesis,fluid source,and gold deposition mechanisms[J].Mineralium Deposita,54(7):1077-1100.
Wang B, Ding Z, Bao Z,et al,2022.Mesozoic Magmatic and Geodynamic Evolution in the Jiaodong Peninsula,China:Implications for the gold and polymetallic mineralization[J].Minerals,12:1073.
Wang Dong, Wang Tianqi, Li Hongyan,2023.Petrogenesis of Early Cretaceous Laoshan A-type granites and the implications for the tectonic evolution of Jiaodong Peninsula[J].Acta Petrologica Sinica,39(2):317-339
Wang Jian, Zhu Lixin, Ma Shengming,et al,2020.Hydrothermal alteration associated with Mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit,Jiaodong gold province[J].Geological Bulletin of China,39(11):1807-1826.
Wang L, Percival J B, Hedenquist J W,et al,2021.Alteration Mineralogy of the Zhengguang epithermal Au-Zn deposit,Northeast China:Interpretation of shortwave infrared analyses during mineral exploration and assessment[J].Economic Geology,116:389-406.
Wang R, Cudahy T, Laukamp C,et al,2017.White Mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits,Western Australia[J].Economic Geology,112(5):1153-1176.
Wu Y F, Evans K, Hu S Y,et al,2021.Decoupling of Au and As during rapid pyrite crystallization[J].Geology,49(7):827-831.
Yang K F, Fan H R, Santosh M,et al,2012.Reactivation of the Archean lower crust:Implications for zircon geochronology,elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane,the North China Craton[J].Lithos,146:112-127.
Yang L Q, Deng J, Wang Z L,et al,2016.Thermochronologic constraints on evolution of the Linglong Metamorphic core complex and implications for gold mineralization:A case study from the Xiadian gold deposit,Jiaodong Peninsula,eastern China[J].Ore Geology Reviews,72:165-178.
Yang Zhiming, Hou Zengqian, Yang Zhusen,et al,2012.Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district:A case study of Niancun ore district,Tibet[J].Mineral Deposits,31(4):699-717.
Yuan Yuelei, Liu Shengchen, Liu Xuguang,et al,2023.The structural-alteration zoning and mineralization of Dayingezhuang gold deposit,Jiaodong Peninsula[J].Geological Bulletin of China,42(4):576-588.
Zhang Junjin, Ding Zhengjiang, Bo Junwei,2023.Study on geological characteristics and metallogenic regularity of gold deposits in the northern sea area of Sanshandao,Jiaodong[C]//Collection of Geological Science and Technology Forum of Six Provinces and One City in East China.Yantai:The Third Exploration Institute of Geology and Mineral Resources of Shandong Province.
Zhang Yan, Duan Shigang, Liu Hanlun,et al,2021.Short wave length interfrared spectral analysis of hydrothermal alteration associated with Suichang gold polymetallic deposit in Zhejiang,China [J].Journal of Earth Science and Environment,43(6):978-996.
Zhao G C, Sun M, Wilde S A,et al,2005.Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited[J].Precambrian Research,136:177-202.
Zhao H, Zhang Y, Xu Y,et al,2024.Machine learning model for deep exploration:Utilizing short wavelength infrared (SWIR) of hydrothermal alteration minerals in the Qianchen gold deposit,Jiaodong Peninsula,Eastern China[J].Ore Geology Reviews,168:106060.
Zou Yanhong, Zhang Wuqiao, Mao Xiancheng,et al,2023.Numerical simulation of hydrothermal alteration chemical reactions during ore-forming process of the Jiaojia gold deposit,Jiaodong Peninsula,China[J].Geotectonica et Me-tallogenia,47(5):1158-1172.
陈华勇,张世涛,初高彬,等,2019.鄂东南矿集区典型矽卡岩—斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J].岩石学报,35(12):3629-3643.
邓军,王庆飞,张良,等,2023.胶东型金矿成因模型[J].中国科学(地球科学),53(10):2323-2347.
霍光,宋国政,闫春明,等,2019.胶东纱岭金矿床构造叠加晕特征及深部找矿预测[J].山东国土资源,35(9):16-22.
李健,宋明春,于建涛,等,2022.胶东东部金青顶金矿床成因:硫化物矿石与围岩微量元素的制约[J].地质通报,41(6):1010-1022.
李胜荣,2013.成因矿物学在中国的传播与发展[J].地学前缘,20(3):46-54.
李胜荣,陈光远,2001.现代矿物学的学科体系刍议[J].现代地质,(2):157-160.
李胜荣,郭谱,曾勇杰,等,2021.山东郯庐断裂两侧金巨量富集的背景、过程与评价[M].北京:地质出版社.
刘家军,王大钊,翟德高,等,2021.低熔点亲铜元素(LMCE)熔体超常富集贵金属的机制及其识别标志[J].岩石学报,37(9):2629-2656.
邵雪维,彭永明,王功文,等,2021.短波红外光谱、X射线荧光光谱、黄铁矿热电性分析在胶东新城金矿田深部找矿中的应用[J].地学前缘,28(3):236-251.
宋明春,林少一,杨立强,等,2020.胶东金矿成矿模式[J].矿床地质,39(2):215-236.
宋明春,宋英昕,丁正江,等,2018.胶东金矿床:基本特征和主要争议[J].黄金科学技术,26(4):406-422.
宋明春,宋英昕,李杰,等,2023.胶东型金矿热隆—伸展成矿系统[J].岩石学报,39(5):1241-1260.
宋明春,王洪军,刘洪波,等,2024.胶西北金矿控矿断裂深部特征及对找矿的启示——来自地球物理探测的证据[J].中国地质,51(1):1-16.
宋明春,伊丕厚,徐军祥,等,2012.胶西北金矿阶梯式成矿模式[J].中国科学(地球科学),42(7):992-1000.
宋明春,张军进,张丕建,等,2015.胶东三山岛北部海域超大型金矿床的发现及其构造—岩浆背景[J].地质学报,89(02):365-383.
宋英昕,2017.胶东三山岛北部海域金矿床蚀变矿物短波红外光谱特征及其对深部找矿的启示[J].黄金科学技术,25(3):54-60.
田丰,冷成彪,张兴春,等,2019.短波红外光谱技术在西藏尼木地区岗讲斑岩铜—钼矿床中的应用[J].地球科学,44(6):2143-2154.
王栋,王天齐,李红艳,2023.胶东崂山早白垩世A型花岗岩成因及对区域构造演化的意义[J].岩石学报,39(2):317-339.
王建,朱立新,马生明,等,2020.胶东三山岛北海域金矿床热液蚀变作用研究[J].地质通报,39 (11):1807-1826.
杨志明,侯增谦,杨竹森,等,2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J].矿床地质,31(4):699-717.
袁月蕾,刘晟辰,柳旭光,等,2023.胶东大尹格庄金矿床构造蚀变分带特征与成矿关系[J].地质通报,42(4):576-588.
张军进,丁正江,薄军委,2023.胶东三山岛北部海域金矿地质特征及成矿规律研究[C]//华东六省一市地学科技论坛文集.烟台:山东省第三地质矿产勘查院.
张炎,段士刚,刘汉仑,等,2021.浙江遂昌金多金属矿床热液蚀变短波红外光谱分析[J].地球科学与环境学报,43(6):978-996.
邹艳红,张武桥,毛先成,等,2023.胶东焦家金矿床成矿过程热液蚀变化学反应数值模拟[J].大地构造与成矿学,47(5):1158-1172.
[1] 王斌, 宋明春, 刘志宁, 李健, 董磊磊, 张艺多, 蒋雷, 王润生, 董小涛, 刘家良. 胶东地区早白垩世周官高镁闪长岩体年代学、地球化学特征及其构造意义[J]. 黄金科学技术, 2024, 32(5): 798-812.
[2] 俞炳, 丁正江, 陈伟军, 李肖, 刘彩杰, 薛建玲, 曾庆栋, 范宏瑞, 吴金检, 张琪彬. 胶东西岭金矿床黄铁矿热电性特征及深部找矿意义[J]. 黄金科学技术, 2024, 32(2): 207-219.
[3] 李子永,张利峰,田海川,王旭东. 高密度电阻率法在莱州矿集区环境地质调查中的应用[J]. 黄金科学技术, 2023, 31(1): 78-87.
[4] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[5] 肖风利,曾庆栋,马凤山,王昭坤,孙之夫,孙宗峰. 胶东西北部重要金成矿断裂带特征[J]. 黄金科学技术, 2018, 26(4): 396-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[8] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[9] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .
[10] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .