img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (5): 768-780.doi: 10.11872/j.issn.1005-518.2024.05.156

• 特约专栏 • 上一篇    下一篇

胶东中生代岩浆岩金等元素组成及其对金成矿的启示

董磊磊1(),白鑫1,宋明春2   

  1. 1.北京科技大学土木与资源工程学院,北京 100083
    2.河北地质大学地球科学学院,河北 石家庄 050031
  • 收稿日期:2024-05-30 修回日期:2024-07-29 出版日期:2024-10-31 发布日期:2024-09-19
  • 作者简介:董磊磊(1991-),男,安徽阜阳人,博士,讲师,从事热液金矿研究工作。leileidong@ustb.edu.cn
  • 基金资助:
    国家自然科学基金NSFC-山东省联合基金项目“胶东深部金矿断裂控矿机理”(U2006201);河北省人才项目“冀北地区金成矿系统及深部找矿技术”(HBQZYCXY0010)

Composition of Gold and Other Elements in the Mesozoic Magmatic Rocks of the Jiaodong Peninsula and Their Implications for Gold Mineralization

Leilei DONG1(),Xin BAI1,Mingchun SONG2   

  1. 1.School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
    2.College of Earth Sciences, Hebei GEO University, Shijiazhuang 050031, Hebei, China
  • Received:2024-05-30 Revised:2024-07-29 Online:2024-10-31 Published:2024-09-19

摘要:

胶东地区是我国最大的金成矿区,但是关于其巨量金的来源一直不明。通过对成矿前的晚侏罗世玲珑期岩体(玲珑、昆嵛山)、早白垩世早期郭家岭期岩体及其暗色包体(郭家岭、丛家)以及成矿后的早白垩世晚期伟德山型岩体及其暗色包体(崂山、牙山、艾山等)的Au、Cu和Ag等元素含量进行分析,发现这些亲铜元素相对于大陆地壳较为亏损。此外,玲珑期和伟德山期样品中Cu/Ag比值与Cu含量具有明显的正相关性。而郭家岭期岩体及其包体中以及伟德山期岩体中的暗色包体中,Cu/Ag比值与Au含量具有正相关性,表明在岩浆演化过程中,单硫化物固溶体从岩浆中持续分离,造成中生代岩浆岩具有较低的Cu/Ag比值和金属含量。这些硫化物的堆晶在中下地壳形成了富集Au等元素的矿源层,为胶东金成矿提供了物质基础。研究还表明,单硫化物固溶体分离是岩浆演化过程中普遍发育的现象,这种现象也可能是导致大陆地壳相对于地幔亏损Cu等元素的原因。

关键词: 胶东, 金成矿, 硫化物堆晶, 玲珑岩体, 郭家岭岩体, 伟德山岩体

Abstract:

The Jiaodong Peninsula is the largest gold-producing region in China,however,the sources of its substantial gold reserves remains uncertain.Analyzing the trace elements in pre-mineralization Late Jurassic Linglong-type plutons (Linglong,Kunyushan),Early Cretaceous Guojialing-type plutons (Guojialing,Congjia),syn- to post-mineralization Early Cretaceous Weideshan-type plutons,and the mafic dioritic enclaves within the latter two plutons reveals that these formations generally exhibit lower concentrations of elements such as Cu,Au,Ag,Sb,and As compared to the average values of the continental crust.Specifically,the gold content is typically below 0.5×10-9,aligning with prior test results and suggesting a depletion process of elements such as gold during magmatic evolution.Furthermore,a significant positive correlation is observed between the Cu/Ag ratio and Cu content in both Linglong-type and Weideshan-type samples.In Guojialing-type plutons and their enclaves,a positive correlation between the Cu/Ag ratio and Au content has been observed.This relationship suggests that during magma evolution,monosulfide solid solution continuously separates from the magma.Consequently,Mesozoic magmatic rocks exhibit lower Cu/Ag ratios and reduced metal content.The accumulation of these sulfides in the middle to lower crust forms an enriched source layer of gold and other elements,thereby providing ore-forming materials essential for gold mineralization in the Jiaodong region.The study also suggests that the separation of monosulfide solid solutions during magma evolution may be a common process,which could also explain why the continental crust is depleted in copper and other elements compared to the mantle.

Key words: Jiaodong, gold mineralization, sulfide accumulation, Linglong-type pluton, Guojialing-type pluton, Weideshan-type pluton

中图分类号: 

  • P618.51

图1

胶东半岛主要构造与岩性单元地质图(修改自Song et al.,2015)1.前寒武纪基底;2.新元古代含石榴石花岗片麻岩;3.太古宙花岗—绿岩带;4.三叠纪花岗岩;5侏罗纪花岗岩;6.白垩纪郭家岭期花岗岩;7.白垩纪伟德山期花岗岩;8.白垩纪火山—沉积岩;9.新生代沉积物;10.断层;11.采样点"

表1

胶东地区不同时代岩浆岩及其暗色包体中Ag、As、Cu、Pb、Sb、Zn和Au元素含量"

样品编号岩体坐标Ag/(ng·g-1As/(μg·g-1Cu/(μg·g-1Pb/(μg·g-1Sb/(μg·g-1Zn/(μg·g-1Au/(ng·g-1
LAu1玲珑岩体120°30′53″E;37°28′37″N35.71.171.6129.20.0851.00.38
LAu2玲珑岩体120°31′30″E;37°29′34″N35.40.951.7630.80.0641.10.30
LAu3玲珑岩体120°31′52″E;37°30′32″N35.70.921.9634.00.0745.70.31
LAu4玲珑岩体120°31′47″E;37°31′01″N49.11.012.1131.30.0855.20.37
LAu5玲珑岩体120°31′31″E;37°31′10″N51.70.835.7636.90.0949.30.16
LAu6玲珑岩体120°30′52″E;37°32′16″N41.70.874.7525.80.0858.40.25
LAu7玲珑岩体120°11′41″E;37°13′09″N33.30.831.7331.60.0758.60.19
LAu8玲珑岩体120°11′49″E;37°13′09″N31.20.911.5224.00.0640.60.15
LAu9玲珑岩体120°09′27″E;37°11′23″N38.10.702.0433.10.0851.00.40
LAu10玲珑岩体120°09′14″E;37°08′52″N25.60.551.6813.90.1130.10.20
LAu11玲珑岩体120°09′35″E;37°07′41″N71.80.842.7959.00.171410.28
LAu12玲珑岩体120°07′29″E;37°08′37″N36.60.781.5333.10.0647.00.31
LAu13玲珑岩体120°07′29″E;37°08′37″N40.10.813.1134.60.0935.80.28
LAu14玲珑岩体120°00′11″E;37°10′46″N38.70.661.6633.70.0843.30.16
LAu15玲珑岩体120°01′07″E;37°09′45″N34.40.692.5523.50.0818.10.33
LAu16玲珑岩体120°01′23″E;37°09′03″N34.80.711.6333.50.0843.10.26
LAu17玲珑岩体120°01′23″E;37°09′03″N72.11.293.8939.80.1198.70.23
LAu18玲珑岩体120°02′38″E;37°07′13″N43.50.774.4632.30.1522.40.12
LAu19玲珑岩体120°02′38″E;37°07′13″N53.50.872.5129.00.1018.60.15
LAu20玲珑岩体120°02′38″E;37°07′13″N41.00.602.2527.30.1124.80.21
LAu21玲珑岩体120°07′15″E;37°06′02″N25.70.732.3821.40.0715.90.29
LAu22玲珑岩体120°10′17″E;37°01′56″N24.50.586.1723.90.0746.70.26
LAu23玲珑岩体120°11′07″E;37°01′25″N30.20.661.6832.60.0725.50.22
LAu24玲珑岩体120°12′40″E;37°55′42″N44.20.532.8540.80.0548.30.13
LAu25玲珑岩体120°12′40″E;37°55′42″N44.40.631.9842.50.0761.10.15
KAu1昆嵛山岩体121°37′10″E;37°10′28″N22.30.761.653.660.1111.00.23
KAu2昆嵛山岩体121°37′10″E;37°10′28″N25.40.521.713.090.087.140.24
KAu3昆嵛山岩体121°39′45″E;37°10′28″N34.40.781.9622.10.1151.20.22
KAu4昆嵛山岩体121°44′29″E;37°11′04″N37.91.151.7825.30.0634.30.49
KAu5昆嵛山岩体121°45′21″E;37°09′54″N50.01.111.6325.30.0736.80.17
KAu6昆嵛山岩体121°45′21″E;37°09′54″N42.70.781.7535.90.0742.00.42
KAu7昆嵛山岩体121°45′18″E;37°09′17″N44.00.711.9427.10.0740.40.23
KAu8昆嵛山岩体121°25′43″E;37°11′11″N40.40.861.6624.80.0751.30.25
KAu9昆嵛山岩体121°27′06″E;37°15′20″N29.80.821.6624.90.0752.80.18
GAu1郭家岭岩体120°34′49″E;37°31′44″N76.41.164.9336.60.2261.60.38
GAu2郭家岭岩体120°34′49″E;37°31′44″N34.21.193.1032.20.0943.70.31
GAu3郭家岭岩体120°35′01″E;37°31′49″N53.31.112.7037.00.1363.50.21
GAu4郭家岭岩体120°35′53″E;37°32′03″N34.71.262.1629.20.0960.80.36
GAu5郭家岭岩体120°35′53″E;37°32′03″N22.61.141.8529.80.1060.20.24
GAu6郭家岭岩体120°38′08″E;37°32′32″N26.31.792.3934.60.1560.60.36
GAu7郭家岭岩体120°49′24″E;37°27′06″N96.91.1850.319.40.0739.90.33
GAu8郭家岭岩体120°49′16″E;37°27′10″N41.91.235.0924.20.0835.90.21
GAu9-1郭家岭岩体120°48′45″E;37°31′51″N44.91.012.5341.90.0956.90.40
GAu10A郭家岭岩体120°50′55″E;37°32′04″N32.61.142.4225.20.1351.70.26
GAu11郭家岭岩体120°47′27″E;37°33′45″N47.30.842.7943.40.1565.00.83
GAu12郭家岭岩体120°53′35″E;37°34′34″N43.90.982.1447.30.0958.70.23
GAu13郭家岭岩体120°52′58″E;37°30′49″N26.80.941.9241.70.0946.90.23
GAu14丛家岩体120°23′59″E;37°28′41″N38.01.052.2440.30.1058.60.18
GAu16丛家岩体120°23′59″E;37°28′41″N41.60.742.2037.00.0958.50.17
GAu17丛家岩体120°24′04″E;37°29′25″N41.31.422.2436.00.3446.60.25
GAu18丛家岩体120°24′04″E;37°29′25″N38.51.281.8532.70.1745.20.21
GAu19丛家岩体120°24′04″E;37°29′25″N49.11.012.4054.00.1443.70.30
GAu20丛家岩体120°24′04″E;37°29′25″N43.30.882.4153.20.1052.20.27
GAu21丛家岩体120°22′56″E;37°29′42″N33.60.851.8031.10.071810.27
GAu22丛家岩体120°22′56″E;37°29′42″N43.01.192.2737.10.1259.90.18
GAu23丛家岩体120°22′56″E;37°29′42″N36.21.092.0337.00.0961.10.18
GAu24丛家岩体120°22′19″E;37°30′50″N36.71.011.8135.70.0853.50.24

图2

胶东地区主要的中生代岩浆岩手标本照片"

图3

Pb、As、Cu、Ag、Zn、Sb和Au元素协变图(a)~(f)Au与Pb、As、Cu、Ag、Zn、Sb元素协变图,绿色线表示每种元素在地壳中的平均含量(数据来自Rudnick et al.,2014);(g)~(h)Pb与Zn、Cu元素含量协变图"

图4

Cu/Ag比值与Au及Cu相关图(a)Cu/Ag比值与Au含量协变图;(b)Cu/Ag比值与Cu含量协变图;MORB和整体地壳(BC)组成参考Jenner et al.(2012)和Rudnick et al. (2014),图(b)中灰色阴影部分为弧后盆地火山岩,数据来源于Jenner et al.(2015)"

Chen J F, Xie Z, Li H M,et al,2003.U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane,China[J].Geochemical Journal,37:35-46.
Chen K, Tang M, Lee C T A,et al,2020.Sulfide-bearing cumulates in deep continental arcs:The missing copper reservoir[J].Earth and Planetary Science Letters,531:115971.
Chen Yumin, Zeng Qingdong, Sun Zhifu,et al,2019.Study on geochemical background field of the gold deposits in Jiaodong,China[J].Gold Science and Technology,27(6):791-801.
Deng J, Wang Q F, Santosh M,et al,2020.Remobilization of metasomatized mantle lithosphere:A new model for the Jiaodong gold province,eastern China[J].Mineralium Deposita,55:257-274.
Deng J, Wang Q F, Zhang L,et al,2023.Metallogenetic model of Jiaodong-type gold deposits,eastern China[J].Science China Earth Sciences,66:2287-2310.
Dong L L, Yang Z M, Liu Y H,et al,2023a.Possible source of Au in the Jiaodong area from lower crustal sulfide cumulates:Evidence from oxygen states and chalcophile elements contents of Mesozoic magmatic suites[J].Ore Geology Reviews,153:105268.
Dong L L, Yang Z M, Song M C,et al,2023b.Petrogenesis of Mesozoic Magmatic Suites in the Jiaodong Peninsula:Implications for crust-mantle interactions and decratonization[J].Lithosphere,(1):6226908.
Dong L L, Bai X, Song M C,et al,2023c.Crustal thickness of the Jiaodong Peninsula in the Mesozoic:Implications for the destruction of the North China Craton[J].Frontiers in Earth Science,11:1171456.
Dong L L, Yang Z M, Bai X,et al,2023d.Generation of the Early Cretaceous granitoid in the Dazeshan region,Jiaodong Peninsula:Implications for the crustal reworking in the North China Craton[J].Frontiers in Earth Science,10:1083608.
Faure M, Lin W, Le Breton N,2001.Where is the North China-South China boundary in eastern China[J].Geology,29:119-122.
Gao Tianshan, Chen Jiangfeng, Xie Zhi,et al,2004.Geochemistry of Triassic igneous complex at Shidao in the Sulu UHP metamorphic belt[J].Acta Petrologica Sinica,20(5):1025-1038.
Goldfarb R J, Baker T, Dube B,et al,2005.Distribution,Chara-cter,and Genesis of Gold Deposits in Metamorphic Terra-nes[M]//Economic Geology 100th Anniversary Volume 40.Littleton:Society of Economic Geologists.
Goldfarb R J, Santosh M,2014.The dilemma of the Jiaodong gold deposits:Are they unique?[J].Geoscience Frontiers,5:139-153.
Goss S C, Wilde S A, Wu F Y,et al,2010.The age,isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane,Shandong Province,North China Craton[J].Lithos,120:309-326.
Groves D I, Santosh M, Deng J,et al,2020.A holistic model for the origin of orogenic gold deposits and its implications for exploration[J].Mineralium Deposita,55:275-292.
Guo Jinghui, Chen Fukun, Zhang Xiaoman,et al,2005.Evolution of syn- to post-collisional magmatism from north Sulu UHP belt,eastern China:Zircon U-Pb geochronology[J].Acta Petrologica Sinica,21(4):1281-1301.
Hou M L, Jiang Y H, Jiang S Y,et al,2007.Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula,east China:Implications for crustal thickening to delamination[J].Geological Magazine,144:619-631.
Jenner F E,2017.Cumulate causes for the low contents of sulfide-loving elements in the continental crust[J].Nature Geoscience,10:524-529.
Jenner F E, Hauri E H, Bullock E S,et al,2015.The competing effects of sulfide saturation versus degassing on the behavior of the chalcophile elements during the differentiation of hydrous melts[J].Geochemistry,Geophysics,Geosystems,16:1490-1507.
Jenner F E, O’neill H S C, Arculus R J,et al,2010.The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au,Ag and Cu[J].Journal of Petrology,51:2445-2464.
Jenner F E, O’Neill H S C,2012.Analysis of 60 elements in 616 ocean floor basaltic glasses[J].Geochemistry,Geophysics,Geosystems,13(2):Q02005.
Jiang N, Chen J Z, Guo J H,et al,2012.In situ zircon U-Pb,oxygen and hafnium isotopic compositions of Jurassic granites from the North China craton:Evidence for Triassic subduction of continental crust and subsequent metamorphism-related 18O depletion[J].Lithos,142:84-94.
Jiang P, Yang K F, Fan H R,et al,2016.Titanite-scale insights into multi-stage magma mixing in Early Cretaceous of NW Jiaodong terrane,North China Craton[J].Lithos,258:197-214.
Li Z K, Li J W, Sun H,et al,2023a.Gold mineralized diorite beneath the Linglong ore field,North China Craton:New insights into the origin of decratonization-related gold deposits[J].GSA Bulletin,136(1/2):277-294.
Li J, Wang C W, Song M C,et al,2023b.Petrogenesis of the Laoshan Suite in the Jiaodong Peninsula (Eastern China):An oxidized low Ba-Sr A1-type granite[J].Minerals,13:1012.
Li Y, Audétat A,2012.Partitioning of V,Mn,Co,Ni,Cu,Zn,As,Mo,Ag,Sn,Sb,W,Au,Pb,and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions[J].Earth and Planetary Science Letters,355:327-340.
Liu Pinghua, Liu Fulai, Wang Fang,2015.P-T-t paths of the multiple metamorphic events of the Jiaobei terrane in the southeastern segment of the Jiao-Liao-Ji Belt ( JLJB),in the North China Craton:Impication for formation and evolution of the JLJB[J].Acta Petrologica Sinica,31(10):2889-2941.
Lu Lina, Fan Hongrui, Hu Fangfang,et al,2011.Emplacement depth of the Guojialing granodiorites from the northwestern Jiaodong Peninsula,eastern China:Evidences from hornblende thermobarometry and fluid inclusions.[J].Acta Petrologica Sinica,27(5):1521-1532.
Ma L, Jiang S Y, Dai B Z,et al,2013.Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula,eastern China:Zircon U-Pb geochronological,geochemical and Sr-Nd-Hf isotopic evidence[J].Lithos,162:251-263.
Patten C, Barnes S J, Mathez E A,et al,2013.Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid:LA-ICP-MS analysis of MORB sulfide droplets[J].Chemical Geology,358:170-188.
Pettke T, Diamond L W, Villa I M,1999.Mesothermal gold veins and metamorphic devolatilization in the northwestern Alps:The temporal link[J].Geology,27:641-644.
Phillips G N,1993.Metamorphic fluids and gold[J].Mineralogical Magazine,57:365-374.
Phillips G N, Powell R,2010.Formation of gold deposits:A metamorphic devolatilization model[J].Journal of Metamorphic Geology,28:689-718.
Qiu K F, Deng J, Laflamme C,et al,2023.Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments[J].Geochimica et Cosmochimica Acta,343:133-141.
Rudnick R L, Gao S,2014.Composition of the continental crust[J].Treatise on Geochemistry,3:1-64.
Song M C, Deng J, Yi P H,et al,2014.The kiloton class Jiaojia gold deposit in eastern Shandong Province and its genesis[J].Acta Geologica Sinica-English Edition,88:801-824.
Song M C, Li J, Yu X F,et al,2021.Metallogenic characteristics and tectonic setting of the Jiaodong gold deposit,China[J].Solid Earth Sciences,6:385-405.
Song M C, Li S Z, Santosh M,et al,2015.Types,characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula,Eastern North China Craton[J].Ore Geology Revie-ws,65(3):612-625.
Wan Y S, Song B A, Liu D Y,et al,2006.SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event[J].Precambrian Research,149:249-271.
Wan Yusheng, Dong Chunyan, Ren Peng,et al,2017.Spatial and temporal distribution,compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton:A synthesis[J].Acta Petrologica Sinica,33(5):1405-1419.
Wang L G, Qiu Y M, McNaughton N J,et al,1998.Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula,China,from SHRIMP U-Pb zircon studies of granitoids[J].Ore Geology Reviews,13:275-291.
Wang Q F, Liu X F, Yin R S,et al,2023.Metasomatized mantle sources for orogenic gold deposits hosted in high-grade metamorphic rocks:Evidence from Hg isotopes[J].Geology,52:115-119.
Wang X, Wang Z C, Cheng H,et al,2022.Gold endowment of the metasomatized lithospheric mantle for giant gold deposits:Insights from lamprophyre dykes[J].Geochimica et Cosmochimica Acta,316:21-40.
Wang Z C, Becker H, Liu Y S,et al,2018.Constant Cu/Ag in upper mantle and oceanic crust:Implications for the role of cumulates during the formation of continental crust[J].Earth and Planetary Science Letters,493:25-35.
Wang Z C, Cheng H, Zong K Q,et al,2020.Metasomatized lithospheric mantle for Mesozoic giant gold deposits in the North China Craton[J].Geology,48:169-173.
Wang Z C, Xu Z, Cheng H,et al,2021.Precambrian metamorphic crustal basement cannot provide much gold to form giant gold deposits in the Jiaodong Peninsula,China[J].Precambrian Research,354:106045.
Xiong L, Zhao X F, Wei J H,et al,2020.Linking Mesozoic lode gold deposits to metal-fertilized lower continental crust in the North China Craton:Evidence from Pb isotope systematics[J].Chemical Geology,553:119440.
Xiong L, Zhao X F, Zhao S R,et al,2021.Formation of giant gold provinces by subduction-induced reactivation of fossilized,metasomatized continental lithospheric mantle in the North China Craton[J].Chemical Geology,580:120362.
Yang Jinhui, Zhu Meifei, Liu Wei,et al,2003.Geochemistry and petrogenesis of Guojialing granodiorites from the northwestern Jiaodong Peninsula,eastern China[J].Acta Petrologica Sinica,19(4):692-700.
Yang K F, Fan H R, Santosh M,et al,2012.Reactivation of the Archean lower crust:Implications for zircon geochronology,elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane,the North China Craton[J].Lithos,146/147:112-127.
Zeng Lingsen, Chen Jing, Chen Zhenyu,et al,2007.Emplacement depth of the Shidao granitic complex and the rapid exhumation of the Sulu ultrahigh pressure rocks:New constraints on the mechanisms for rapid exhumation[J].Acta Petrologica Sinica,23(12):3171-3179.
Zhang J, Zhao Z F, Zheng Y F,et al,2010.Postcollisional magmatism:Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen,China[J].Lithos,119:512-536.
Zhang Yueqiao, Li Jinliang, Zhang Tian,et al,2007.Late Mesozoic Kinematic History of the Muping-Jimo Fault Zone in Jiaodong Peninsula,Shandong Province,East China[J].Geological Review,53(3):289-300.
Zhao G V, Sun M, Wilde S A,et al,2005.Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited[J].Precambrian Research,136:177-202.
Zhu Guang, Liu Cheng, Gu Chengchuan,et al,2018.Oceanic plate subduction history in the western Pacific Ocean:Constraint from late Mesozoic evolution of the Tan-Lu fault zone[J].Science China Earth Sciences,48(4):415-435.
陈玉民,曾庆栋,孙之夫,等,2019.胶东金地球化学背景研究[J].黄金科学技术,27(6):791-801.
高天山,陈江峰,谢智,等,2004.苏鲁超高压变质带中三叠纪石岛杂岩体的地球化学研究[J].岩石学报,20(5):1025-1038.
郭敬辉,陈福坤,张晓曼,等,2005.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石 U-Pb 年代学[J].岩石学报,21(4):1281-1301.
刘平华,刘福来,王舫,2015.胶北地体多期变质事件的P-T-t轨迹及其对胶—辽—吉带形成与演化的制约[J].岩石学报,31(10):2889-2941.
陆丽娜,范宏瑞,胡芳芳,等,2011.胶西北郭家岭花岗闪长岩侵位深度:来自角闪石温压计和流体包裹体的证据[J].岩石学报,27(5):1521-1532.
万渝生,董春艳,任鹏,等,2017.华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化:综述[J].岩石学报,33(5):1405-1419.
杨进辉,朱美妃,刘伟,等,2003.胶东地区郭家岭花岗闪长岩的地球化学特征及成因[J].岩石学报,19(4):692-700.
曾令森,陈晶,陈振宇,等,2007.山东石岛花岗岩复合岩体的侵位深度与苏鲁超高压变质岩的快速折返机制及动力学效应[J].岩石学报,23(12):3171-3179.
张岳桥,李金良,张田,等,2007.胶东半岛牟平—即墨断裂带晚中生代运动学转换历史[J].地质论评,53(3):289-300.
朱光,刘程,顾承串,等,2018.郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示[J].中国科学:地球科学,48(4):415-435.
[1] 李健, 宋明春, 王昌伟, 王润生, 雷鸣, 崔庆意, 李杰, 李世勇. 胶东三山岛断裂带金矿床蚀变矿物勘查标识[J]. 黄金科学技术, 2024, 32(5): 749-767.
[2] 胡文萱, 宋明春, 李杰, 董磊磊, 赵润芊, 张亮亮, 李健, 白天慧. 胶东金矿成矿物质来源:来自与金成矿有关地质单元金含量的约束[J]. 黄金科学技术, 2024, 32(5): 781-797.
[3] 王斌, 宋明春, 刘志宁, 李健, 董磊磊, 张艺多, 蒋雷, 王润生, 董小涛, 刘家良. 胶东地区早白垩世周官高镁闪长岩体年代学、地球化学特征及其构造意义[J]. 黄金科学技术, 2024, 32(5): 798-812.
[4] 俞炳, 丁正江, 陈伟军, 李肖, 刘彩杰, 薛建玲, 曾庆栋, 范宏瑞, 吴金检, 张琪彬. 胶东西岭金矿床黄铁矿热电性特征及深部找矿意义[J]. 黄金科学技术, 2024, 32(2): 207-219.
[5] 胡宝群,高海东,王运,张宝林,吕古贤,申玉科,郭涛. 玲珑金矿田含矿断裂的基岩地球化学特征及找矿潜力评价[J]. 黄金科学技术, 2022, 30(4): 518-531.
[6] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[7] 李逸凡,李洪奎,韩学林,耿科,张玉波,陈国栋. 胶东夏甸金矿床成因:流体包裹体及同位素证据[J]. 黄金科学技术, 2021, 29(2): 184-199.
[8] 张振, 宁生元, 徐增田. 胶东玲珑九曲金矿床载金黄铁矿矿物学特征及其深部找矿意义[J]. 黄金科学技术, 2020, 28(3): 328-336.
[9] 郭辉,刘春明,黄德志,邹海洋,陈磊. 广西大瑶山大裕金矿地质特征及找矿预测[J]. 黄金科学技术, 2020, 28(1): 12-20.
[10] 陈玉民,曾庆栋,孙之夫,王昭坤,范宏瑞,肖风利,褚少雄. 胶东金地球化学背景研究[J]. 黄金科学技术, 2019, 27(6): 791-801.
[11] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[12] 刘诗鹏,王树亚,冯欣欣,殷传印. 胶东三山岛西岭金矿区NW向断裂带的确定:综合物探证据[J]. 黄金科学技术, 2019, 27(1): 25-32.
[13] 梁光河. 郯庐断裂带的几个关键问题探讨[J]. 黄金科学技术, 2018, 26(5): 543-558.
[14] 肖风利,曾庆栋,马凤山,王昭坤,孙之夫,孙宗峰. 胶东西北部重要金成矿断裂带特征[J]. 黄金科学技术, 2018, 26(4): 396-405.
[15] 宋明春,宋英昕,丁正江,李世勇. 胶东金矿床:基本特征和主要争议[J]. 黄金科学技术, 2018, 26(4): 406-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!