img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (5): 813-829.doi: 10.11872/j.issn.1005-518.2024.05.164

• 特约专栏 • 上一篇    下一篇

胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示

周晓萍1,2(),宋明春3(),刘向东1,闫春明1,胡兆君1,苏海岗1,胡秉谦1,周宜康1   

  1. 1.山东省地质矿产勘查开发局第六地质大队,山东 威海 264209
    2.山东省地质矿产勘查开发局第三地质大队,山东 烟台 264000
    3.河北省战略性关键矿产资源重点实验室,河北地质大学地球科学学院,河北 石家庄 050031
  • 收稿日期:2024-06-04 修回日期:2024-07-25 出版日期:2024-10-31 发布日期:2024-09-19
  • 通讯作者: 宋明春 E-mail:sddkzxp@126.com;mingchuns@163.com
  • 作者简介:周晓萍(1989-),女,山东龙口人,工程师,从事岩石学和矿床学方面的研究工作。sddkzxp@126.com
  • 基金资助:
    国家自然科学基金NSFC-山东省联合基金项目“胶东深部金矿断裂控矿机理”(U2006201);河北省全职引进国家高层次创新型人才科研项目“冀北地区金成矿系统及深部找矿技术”(2023HBQZYCSB010);山东省地质矿产勘查开发局科技攻关项目“胶西北断裂系统及其与金成矿关系”(KY202208)

Formation Age,Petrogenesis,and Implications for Gold Mineralization of Giant Porphyritic Granite in the Sanshandao Gold Deposit in Jiaodong

Xiaoping ZHOU1,2(),Mingchun SONG3(),Xiangdong LIU1,Chunming YAN1,Zhaojun HU1,Haigang SU1,Bingqian HU1,Yikang ZHOU1   

  1. 1.No. 6 Geological Team of Shandong Province Bureau of Geology and Mineral Resources, Weihai 264209, Shan-dong, China
    2.No. 3 Geological Team of Shandong Province Bureau of Geology and Mineral Resources, Yantai 264000, Shan-dong, China
    3.Hebei Key Laboratory of Strategic Critical Mineral Resources, College of Earth Sciences, Hebei GEO University, Shijiazhuang 050031, Hebei, China
  • Received:2024-06-04 Revised:2024-07-25 Online:2024-10-31 Published:2024-09-19
  • Contact: Mingchun SONG E-mail:sddkzxp@126.com;mingchuns@163.com

摘要:

胶东地区三山岛金矿床的主要赋矿围岩是中生代玲珑花岗岩和郭家岭花岗岩。通过对三山岛巨斑花岗岩进行岩相学、岩石地球化学和锆石U-Pb同位素年代学等研究,分析其地球化学类型、形成时代、岩浆源区及成因,讨论了成岩与成矿的关系。岩石地球化学特征表明:三山岛巨斑花岗岩的SiO2、Al2O3和全碱(Na2O+K2O)含量较高;铝饱和指数A/CNK为1.34,属过铝质—钙碱性系列岩石;稀土元素含量较低,轻稀土相对富集,重稀土相对亏损;岩石富集Rb、Sr、和Ba等大离子亲石元素,亏损Ta、Nb、P和Ti等高场强元素;岩石地球化学特征与富钠花岗岩和年轻的TTG(<3 Ga)相似。巨斑花岗岩的锆石U-Pb加权平均年龄为(127.05±0.41) Ma,属于早白垩世郭家岭期花岗岩。岩石中金丰度值较早前寒武纪变质岩系明显降低。综合研究认为,巨斑花岗岩是下地壳酸性岩浆与少量幔源基性岩浆混合作用的结果,形成于太平洋板块俯冲和华北克拉通破坏背景下的伸展构造环境,岩体中的钾长石巨晶是岩浆期后钾化作用的结果;具有较高背景金丰度的早前寒武纪变质基底岩石部分熔融过程中,地球化学元素重新调整,金质被活化、迁移,形成富金流体库,并产生贫金花岗岩;花岗岩快速侵位和地壳强烈隆升产生的拆离断层系统,以及钾化作用导致岩石体积膨胀而破裂,为成矿流体聚集和矿化富集提供了良好的物理圈闭空间。

关键词: 三山岛金矿, 巨斑花岗岩, 岩石地球化学, 锆石U-Pb年代学, 郭家岭期花岗岩

Abstract:

The primary host rocks of the Sanshandao gold deposit in the Jiaodong region are the Mesozoic Linglong granite and Guojialing granite.Through the application of petrographic analysis,geochemical assays,and zircon U-Pb geochronology,the geochemical classifications,formation ages,magma source regions,and petrogenesis of the granite were investigated.Additionally,the relationship between diagenesis and mineralization was examined.The geochemical characteristics of the rocks reveal a relatively high content of SiO2,Al2O3,and total alkali (Na2O+K2O).The aluminum saturation index (A/CNK) is 1.34,classifying these rocks within the Peraluminous-Calcium alkaline series.The concentration of rare earth elements (REE) is relatively low,with a relative enrichment of light rare earth elements (LREE) and a deficiency in heavy rare earth elements (HREE).The rocks are enriched in large-ion lithophile elements (LILE) such as Rb,Sr,and Ba,while high field strength elements (HSFE) such as Ta,Nb,P,and Ti are notably deficient.The geochemical characteristics of the Sanshandao giant porphyritic granite are comparable to those of sodium-rich granites and young tonalite-trondhjemite-granodiorite (TTG) complexes (younger than 3 Ga).The zircon U-Pb weighted average age of the giant porphyritic granite is determined to be(127.05±0.41)Ma,corresponding to the early Cretaceous Guojialing period granite.The gold concentration in the giant porphyritic granite is markedly lower compared to that in early Precambrian metamorphic rocks.Integrating these findings with prior research,it is inferred that the giant porphyritic granite predominantly comprises lower crustal acidic magma,with a minor contribution from mantle-derived basic magma,formed through magmatic mixing.The formation of the rock occurred within an extensional tectonic environment characterized by the subduction of the Pacific Plate and the destruction of the North China Craton.The presence of large feldspar crystals within the rock can be attributed to post-magmatic potassium mineralization.Additionally,Early Precambrian metamorphic rocks,which exhibit relatively high background values of gold abundance,undergo partial melting.During this process,geochemical elements are redistributed,leading to the activation and migration of gold,which results in the formation of a gold-rich fluid reservoir and the subsequent production of gold-poor granite.The rapid intrusion of granite,coupled with the detachment fault system induced by significant crustal uplift and potassium mineralization,collectively contributed to the initial expansion and subsequent rupture of rock volume.This process created an optimal physical trap space conducive to the accumulation and enrichment of ore-forming fluids.

Key words: Sanshandao gold deposit, giant porphyritic granite, geochemistry, zircon U-Pb geochronology, Guojialing period granite

中图分类号: 

  • P618.51

图1

郭家岭花岗岩(a)和三山岛巨斑花岗岩(b)地质分布图1.第四系;2.白垩系;3.古元古界;4.新太古界;5.中生代雨山序列;6.中生代伟德山序列;7.中生代郭家岭序列;8.中生代玲珑序列;9.中生代柳林庄序列;10.含金蚀变带;11.地质界线;12.实测及推测断裂;13.金矿体"

图2

三山岛巨斑花岗岩野外及显微镜下特征(a)巨斑花岗岩野外照片;(b)、(c)钾长石斑晶包含结构;(d)弱绢英岩化蚀变Q-石英;Pl-斜长石;Kfs-钾长石;Mc-微斜长石;Ms-白云母;Ser-绢云母"

表1

三山岛巨斑花岗岩主量元素(%)、微量元素(×10-6)及金丰度(10-9)分析结果"

样品编号SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OP2O5烧失量总量σMg#A/CNKA/NK
GJL73.830.1615.140.820.020.320.084.932.780.041.2599.371.93441.341.36
样品编号LaCePrNdSmEuGdTbDyHoErTmYbLuRbBa
GJL9.3716.061.876.701.190.320.800.100.460.080.210.030.200.03101.59410.18
样品编号ThNbTaPbSrNdSmHfTiYYbΣREEδEuδCe(La/Yb)NAu
GJL2.242.910.192.16108.926.701.193.21932.042.830.2037.410.940.8932.030.410

图3

三山岛巨斑花岗岩TAS图解(a)、A/CNK-A/NK图解(b)和SiO2-K2O图解(c)注:郭家岭花岗岩数据引自文献(罗贤冬等,2014;陈广俊等,2014;王立功等,2018;王斌等,2021)"

图4

郭家岭花岗岩主量元素与SiO2协变图(Harker图解)注:郭家岭花岗岩数据引自文献(罗贤冬等,2014;陈广俊等,2014;王立功等,2018;王斌等,2021)"

图5

三山岛巨斑花岗岩稀土元素配分模式图(a)和微量元素蛛网图(b)注:埃达克岩、TTG及富钠花岗岩数据引自杨进辉等(2003);郭家岭花岗岩数据引自文献(罗贤冬等,2014;陈广俊等,2014;王立功等,2018;王斌等,2021)"

图6

三山岛巨斑花岗岩锆石CL图像"

图7

锆石稀土元素配分模式图和(Sm/La)N-δCe关系图注:图(a)阴影分布范围据Geisler et al.(2003);图(b)阴影分布范围据Hoskin(2005)"

表2

三山岛巨斑花岗岩锆石微量元素分析结果"

点号LaCePrNdSmEuGdTbDyHoErTmYbLuNbTaΣREEΣLREEΣHREE(Lu/Gd)NδEuδCeNb/Ta
10.01313.7520.0310.9753.8390.65433.28811.763141.06546.750203.47839.266335.01757.3113.4320.6818871986813.850.12117.365.04
20.00428.0000.0511.1327.4911.21459.82620.664241.07880.099326.60461.784513.59880.37612.671.7971 422381 38410.810.12166.367.05
37.11537.7383.35017.6588.7961.24636.52211.385138.30848.039210.49441.091349.58559.8195.0300.7979717689513.170.181.896.31
40.00520.6540.0310.9144.3391.03333.42911.723150.35253.827242.29648.955424.45272.8487.1181.2111 065271 03817.530.19194.525.88
50.00521.2500.0391.0484.5130.97934.75312.376154.17455.117246.38749.922431.28274.3397.1371.2331 086281 05817.210.17160.085.79
60.0055.8800.0230.2380.6860.2913.6821.31815.6576.22632.7757.87084.58618.0061.5070.508177717039.330.4572.212.97
70.0319.8120.0300.6472.2430.53517.0316.45378.67928.953134.00628.049244.50544.4273.7030.8225951358220.980.1971.824.50
80.0062.0950.0040.1050.2540.1332.4221.12516.3956.65839.62110.322110.80023.5472.1210.712213321178.210.34104.892.98
90.02120.7230.1112.3859.4381.98763.12018.862206.93765.965270.11050.593413.63968.8175.3891.0561 193351 1588.770.1953.995.10
100.00622.3560.0401.0255.4051.16738.27513.453164.03259.381264.17652.632454.48079.3407.5271.2981 156301 12616.670.18163.165.80
110.00616.6180.0270.2861.2880.8298.9292.57830.93811.07456.03412.914129.78028.0371.8910.4292991928025.260.55175.114.40
120.00613.0290.0130.7632.8420.68125.4958.821103.46136.253161.96231.916277.02248.8624.5130.8107111769415.420.16261.785.57
130.00731.8930.0450.7861.2350.5946.4821.71216.8865.74426.6016.09157.49612.1641.7930.5621683513315.090.52206.823.19
140.0234.0840.0451.0932.6581.25714.7454.50651.23019.04089.34819.172180.20434.1763.9101.348422941218.640.4923.412.90
150.0227.6000.1011.5003.2840.90017.0055.85571.99928.083138.04231.430312.10562.2212.1181.0376801366729.430.3021.582.04
160.0066.8070.0170.4741.5140.89811.5593.42239.71614.76770.82915.255150.56431.6552.0370.4043471033822.030.47106.925.05
170.00620.2980.0461.0224.8731.05140.38213.411164.64758.667256.51248.678412.87371.4337.8641.2661 094271 06714.230.16130.576.21
183.92844.0832.45215.15410.2021.83346.44414.024160.62853.730229.54643.896378.00065.4528.3131.3491 0697899211.340.223.406.16
190.007111.4410.1834.31310.2246.19147.93912.927133.36443.409188.73036.939320.04457.3073.4270.3709731328419.620.71185.909.27
200.00824.0320.0380.8635.7631.17341.15013.181147.99347.607202.73737.876321.28753.08010.3672.1018973286510.380.17180.694.93
210.04930.3760.0491.3757.4011.53351.19415.915173.41656.607230.49043.161351.67559.44010.6291.6291 023419829.340.18138.166.53
220.25021.4870.1691.8444.8441.10934.56811.928146.73353.067231.31243.886384.92967.0026.5320.9901 0033097315.590.1924.816.59
230.00512.2120.0400.7232.7390.90921.2006.92682.88029.177132.24325.806225.51242.1914.0450.7395831756616.010.2691.115.48
240.05320.0000.0551.1014.2691.09634.61912.105150.25853.182236.26446.086403.64371.2816.2521.0391 034271 00716.560.1982.186.02
250.04613.5610.0190.4162.5180.60921.2297.76091.07632.546152.04730.248266.31748.3335.5321.0926671765018.310.18113.425.07
260.00520.2800.0511.1625.5491.16938.59513.269164.00457.127250.93948.217408.06371.3257.2261.0851 080281 05214.860.18118.256.66
270.04417.6930.0661.0244.8491.09437.83513.300156.87255.165239.08745.090376.61865.6905.9581.0211 0142599013.970.1766.075.84
290.00848.3260.0801.4022.6060.87710.6393.39937.95113.85267.92715.392154.02031.1552.3560.6693885333423.560.44180.543.52

表3

三山岛巨斑花岗岩LA-ICP-MS锆石 U-Pb年龄分析结果"

测试点编号

元素含量

/(×10-6

Th/U同位素比值年龄/Ma
ThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb206Pb/238U207Pb/235U

谐和度

/%

测值1σ测值1σ测值1σ测值2σ测值2σ测值2σ
11835640.30.04910.02210.13420.02220.01980.00621071101262128599
22797740.40.04890.02040.13580.01930.02010.0080134911282129599
3862850.30.05090.08530.13520.05500.01990.0109-5316312731281299
41023550.30.04600.03050.12710.02990.02000.0084-441451282121795
51063670.30.04650.03040.12710.02860.01980.0075-591561272121796
614810.20.04940.06720.15920.06270.02370.0137-14131815141481798
7441700.30.04710.05220.12600.04790.01950.0130-18026412531201196
891450.10.05250.03670.17420.03740.02400.009719417815331621194
91844910.40.05020.02680.13570.02710.01950.00731431351252129797
10983160.30.05210.03150.14310.03020.01990.00942171411272135894
111464240.30.04920.02600.13430.02540.01980.0070951361262128699
12542000.30.04900.04190.13570.04170.02020.0096-7214129212910100
1387312.80.13620.01256.96110.00940.36860.00912 181402 022322 1051796
14301760.20.04820.04040.15840.04100.02350.0186921415051491199
15752800.30.17920.008211.17760.01050.45340.00542 642282 410222 5362095
16391860.20.05060.03130.13950.03150.02000.01002201251283132896
171324350.30.04820.02070.12940.01810.01950.0087701051252123499
182735860.50.04680.02460.12820.02400.01980.0059-81141271122697
194447210.60.04970.02300.13990.02050.02050.00821901091312133598
204841 1400.40.04820.01900.13270.01810.02000.004576921281126499
214479200.50.04740.01940.13260.01850.02030.0061541011292126498
221243580.30.04840.03060.13270.03150.01980.00783814812621267100
231013200.30.04990.03040.13760.02990.01990.00871371541272131797
24982820.30.04940.03100.13640.03110.02000.0087811611282129899
25963810.30.04790.02730.12980.02610.01960.0089591401252124699
261494660.30.04890.03350.13770.02740.02040.017612213413051317100
271494590.30.04560.02480.12440.02470.01970.0066-791261262119694
292332351.00.16380.00519.74850.00470.43010.00312 494172 306122 411996

图8

锆石U-Pb年龄谐和图(a、c、d)和频率分布图(b)"

图9

构造环境判别图解注:埃达克岩、TTG及富钠花岗岩数据引自杨进辉等(2003);郭家岭花岗岩数据引自文献(罗贤冬等,2014;陈广俊等,2014;王立功等,2018;王斌等,2021)"

Chai P, Hou Z Q, Zhang H R,et al,2019a.Geology,fluid inclusion,and H-O-S-Pb isotope constraints on the mineralization of the Xiejiagou gold deposit in the Jiaodong Peninsula[J].Geofluids,(1):3726465.
Chai P, Zhang H R, Dong L L,et al,2019b.Geology and ore-forming fluids of the Dayingezhuang gold deposit,Jiaodong Peninsula,eastern China:Implications for mineral exploration[J].Journal of Geochemical Exploration,204:224-239.
Chai P, Zhang H R, Hou Z Q,et al,2020.Geochronological framework of the Damoqujia gold deposit,Jiaodong Peninsula,China:Implications for the timing and geologic setting of gold mineralization[J].Geological Journal,55:596-613.
Chai P, Zhang Z Y, Hou Z Q,2019c.Geological and fluid inclusion constraints on gold deposition processes of the Dayingezhuang gold deposit,Jiaodong Peninsula[J].China Acta Geologica Sinica(English Edition),93(4):955-971.
Chai Peng, Sun Jinggui, Yuan Lingling,et al,2023.Zircon trace element geochemical characteristics of ore-bearing igneous rocks from Duhuangling high-sulfidation epithermal gold deposit and its geological significance,Yanji Area,Jilin Province[J].Journal of Jilin University(Earth Science Edition),53(3):767-784.
Chen Guangjun, Sun Fengyue, Li Yuchun,et al,2014.U-Pb dating,geochemical characteristics and geological significance of Guojialing grandiorite in Jiaodong Peninsula[J].Global Geology,33(1):39-47.
Chen Yumin, Zeng Qingdong, Sun Zhifu,et al,2019.Study on geochemical background field of the gold deposits in Jiaodong,China[J].Gold Science and Technology,27(6):791-801.
Chi Qinghua, Yan Mingcai, Qi Changmou,1997.Mean chemical composition of major metamorphic rocks of Archean in North China Platform[J].Journal of Changchun University of Earth Sciences,27(2):126-134.
Deng J, Qiu K F, Wang Q F,2020.In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province,eastern China[J].Scientific Communications,115(3):671-685.
Deng Jun, Wang Qingfei, Zhang Liang,et al,2023.Metallogenetic model of Jiaodong-type gold deposits Eastern China[J].Science China(Earth Sciences),66(10):2287-2310.
Dou Jingzhao, Fu Shun, Zhang Huafeng,et al,2015.Consolidation and cooling paths of the Guojialing granodiorites in Jiaodong Peninsula:Implication for crustal uplift and exhumation[J].Acta Petrologica Sinica,31(8):2325-2336.
Gao S, Rudnick R L, Carlson R W,et al,2002.Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton[J].Earth and Planetary Science Letters,198(3-4):307-322.
Gao S, Zhang J F, Xu W L,et al,2009.Delamination and destruction of the North China Craton[J].Chinese Science Bulletin,54(19):3367-3378.
Geisler T, Rashwan A A, Rahn M K W,et al,2003.Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert,Egypt[J].Mineralogical Magazine,67(3):485-508.
Goss C S, Whilde S A, Wu F Y,et al,2010.The age,isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane,Shandong Province,North China Craton[J].Lithos,120(3/4):309-326.
Green T H,1995.Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J].Chemical Geology,120:347-359.
Guan Kang, Luo Zhenkuan, Miao Laicheng,et al,1998.SHRIMP in zircon chronology for Guojialing suite granite in Jiaodong Zhaoye District[J].Scientia Geologica Sinica,33(3):318-328.
Guo Jinghui, Chen Fukun, Zhang Xiaoman,et al,2005.Evolution of Syn-to Post-collisional Magmatism from North Sulu UHP Belt Eastern China:Zircon U-Pb Geochronology[J].Acta Petrologica Sinica,21(4):1281-1301.
Hoskin P W O,2005.Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills,Australia[J].Geochimica et Cosmochimica Acta,69(3):637-648.
Hou Guowang, Li Hongyan, Niu Zhijian,et al,2017.Review on the K-feldspar megacryst in granite and research methodology[J].Bulletin of Mineralogy,Petrology and Geochemistry,36(2):345-353.
Hu F F, Fan H R, Yang J H,et al,2004.Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula:SHRIMP U-Pb dating on hydrothermal zircon[J].Chinese Science Bulletin,49(15):1629-1636.
Hu Shiling, Wang Songshan, Sang Haiqing,et al,1987.Isotopic ages of Linglong and Guojialing Batholiths in Shandong Province and their geological implication[J].Acta Petrologica Sinica,3(3):38-89.
Hu Z C, Liu Y S, Gao S,et al,2012.Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry,27(9):1391-1399.
Lassiter J C, Depaolo D J,1997.Plumes/Lithosphere Interaction in the Generation of Continental and Ocranic Flood Basalts:Chemical and Isotope Constrationts[M]//Mahoney J J,Coffin M F.Large Igneous Provinces:Continental,Oceanic,and Planetary Flood Volcanism.Washington:American Geophysical Union.
Li Shixian, Liu Changchun, An Yuhong,et al,2007.Geology of Jiaodong Gold Mine[M].Beijing :Geology Press.
Chengxun Lü, Huo Qinglong, Tang Zhanxin,et al,2021.Structural alteration zone and listric distribution characteristics in Northwest Jiaodong Peninsula[J].Geoscience,35(5):1274-1281.
Ludwig K R,2003.ISOPLOT 3.0:A geochronological toolkit for Microsoft Excel[J].Berkeley Geochronology Center Special Publication,4:1-70.
Luo Xiandong, Yang Xiaoyong, Duan Liu’an,et al,2014.Geocheical and geochhronological study of the gold-related Guojialing pluton and Shangzhuang pluton in Jiaobei block[J].Acta Geologica Sinca,88(10):1874-1888.
Ma L, Jiang S Y, Dai B Z,et al,2013.Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula,Eastern China:Zircon U-Pb geochronological,geochemical and Sr-Nd-Hf isotopic evidence[J].Lithos,162:251-263.
Menzies M A, Fan W M, Zhang M,1993.Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archean lithosphere,Sino-Korean craton,China[J].Geological Society,London,Special Publications,76(1):71-81.
Miao Laicheng, Luo Zhenkuan, Guan Kang,et al,1998.The implication of the SHRIMP U-Pb age in zircon to the petrogenesis of the Linglong granite,east Shangdong Province[J].Acta Petrologica Sinica,14(2):198-206.
Song M C, Ding Z J, Zhang J J,et al,2021.Geology and mineralization of the Sanshandao supergiant gold deposit(1200t)in the Jiaodong Peninsula,China:A review[J].China Geology,4(4):686-719.
Song Mingchun, Li Jie, Zhou Jianbo,et al,2020.The discovery and tectonic setting of the early cretaceous high-Mg diorites in the Jiaodong Peninsula[J].Acta Petrologica Sinica,36(1):279-296.
Song Mingchun, Li Sanzhong, Yi Pihou,et al,2014.Classification and metallogenic theory of the Jiaojia-style gold depo-sit in Jiaodong Peninsula China[J].Journal of Jilin University(Earth Science Ediion),44(1):87-104.
Song Mingchun, Song Yingxin, Li Jie,et al,2023.Thermal doming-extension metallogenic system of Jiaodong type gold deposits[J].Acta Petrologica Sinica,39(5):1241-1260.
Song M C, Wang L, Song Y X,et al,2023.Geometry and origin of supergiant gold deposits in the Jiaodong gold province,eastern China[J].Journal of Asian Earth Sciences,254(15):105744.
Song Mingchun, Yang Liqiang, Fan Hongrui,et al,2022.Current progress of metallogenic research and deep prospecting of gold deposits in the Jiaodong Peniusula during 10 years for exploration breakthrough strategic action[J].Geological Bulletin of China,41(6):903-935.
Song Mingchun, Yi Pihou, Xu Junxiang,et al,2012.A step metallogenetic model for gold deposits in the northwestern Shandong Peninsula[J].Science China:Earth Sciences,42(7):992-1000.
Song M C, Zhou J B, Song Y X,et al,2020.Mesozoic Weideshan granitoid suite and its relationship to large-scale gold mineralization in the Jiaodong Peninsula,China[J].Geological Journal,55:5703-5724.
Sun S S, Mcdonough W F,1989.Chemical and isotopic systematics of oceanic basalts:Implication for mantle composition and processes[J].Geological Society Special Publication,42(1):313-345.
Taylor S R, Mclennan S M,1985.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell.
Tian Ruicong, Li Dapeng, Zhang Wen,et al,2022.The mixing of mesozoic cruse-mantle magma is the key to the source of large amounts of gold deposits in the Jiaobei uplift,China[J].Acta Petrologica Sinica,38(1):23-40.
Vermeesch P,2018.IsoplotR:A free and open toolbox for geochronology[J].Geoscience Frontiers,5:1479-1493.
Wang Bin, Song Mingchun, Huo Guang,et al,2021.Source characteristics and tectonic evolution of Late Mesozoic granites in Jiaodong and their implications for gold mineralization[J].Acta Petrologica et Mineralogica,40(2):288-320.
Wang Hao, Yang Liqiang, Wang Sirui,et al,2020.The Process of rubefication and its relationship with gold mineralization of Sizhuang gold deposit,northwestern Jiaodong Peninsula,eastern China[J].Acta Petrologica Sinica,36(5):1515-1528.
Wang Jian, Zhu Lixin, Ma Shengming,et al,2020.Hydrothermal alteration associated with mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit,Jiaodong gold province[J].Geological Bulletin of China,39(11):1807-1826.
Wang L G, Qiu Y, McNaughton N J,et al,1998.Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula,China,from SHRIMP U-Pb zircon studies of granitoids[J].Ore Geology Reviews,13:275-291.
Wang Ligong, Zhu Decheng, Guo Ruipeng,et al,2018.Geochemistry,Zircon U-Pb age and Lu-Hf isotopes of the Cang-shang and Sanshandao monzogranites in the northwestern Jiaodong Peninsula,China[J].Acta Geologica Sinca,92(10):2081-2095.
Wang Shijin, Wan Yusheng, Guo Ruipeng,et al,2011.SHRIMP zircon dating of Linglong type (superunit) granite in eastern Shandong Province[J].Shandong Land and Resources,27(4):1-7.
Xu Honglin, Zhang Dequan, Sun Guiying,et al,1997.Characteristics and genesis of Kunyushan granite and its relation with gold deposits in Jiaodong[J].Acta Petrologica Et Mineralogica,16(2):131-143.
Xu Y G, Li H Y, Pang C J,et al,2009.On the timing and duration of the destruction of the North China Craton[J].Chinese Science Bulletin,54(19):3379-3396.
Yang J H, Chung S L, Zhai M G,et al,2004.Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula,China:Evidence for vein-plus-peridotite melting in the lithospheric mantle[J].Lithos,73(3):145-160.
Yang Jinhui, Zhu Meifei, Liu Wei,et al,2003.Geochemistry and petrogenesis of Guojialing granodiorites from the nor-thwestern Jiaodong Penninsula,eastern China[J].Acta Petrologica Sinica,19(4):692-700.
Yang K F, Fan H R, Santosh M,et al,2012.Reactivation of the Archean lower crust:Implications for zircon geochronology,elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong terrane,the North China Craton[J].Lithos,146/147:112-127.
Yang J H, Xu L, Sun J F,et al,2021.Geodynamics of decratonization and related magmatism and mineralization in the North China Craton[J].Science China(Earth Sciences),64(9):1409-1427.
Yu Xiaowei, Wang Laiming, Liu Handong,et al,2021.Study on Early Cretaceous Guojialing Granite in Jiaodong Area[J].Shandong Land and Resources,37(9):12-25.
Zhai Mingguo, Liu Wenjun, Yang Jinhui,2001.Large scale gold ore concentration area and large scale mineralization in Jiaodong[J].Science in China(Series D),31(7):545-552.
Zhang Huafeng, Li Shengrong, Zhai Mingguo,et al,2006.Crust uplift and its implications in the Jiaodong Peninsula,Eastern China[J].Acta Petrologica Sinica,22(2):285-295.
Zhang J, Zhao Z F, Zheng Y F,et al,2010.Postcollsional magmatism:Geochemical constrains on the petrogenesis of Mesozoic granitoids in the Sulu orogen,China[J].Lithos,119(3/4):512-536.
Zhong Lingzhi, Mao Xiancheng, Liu Zhankun,et al,2022.Ore-controlling effect of structural geometry features in the Sanshandao gold belt,Jiaodong Peninsula,China:Insights from numerical simulation[J].Gold Science and Technology,30(3):352-1365.
柴鹏,孙景贵,袁玲玲,等,2023.吉林延吉杜荒岭浅成热液金矿床岩体锆石微量元素地球化学特征及其地质意义[J].吉林大学学报(地球科学版),53(3):767-784.
陈广俊,孙丰月,李玉春,等,2014.胶东郭家岭花岗闪长岩U-Pb年代学、地球化学特征及地质意义[J].世界地质,33(1):39-47.
陈玉民,曾庆栋,孙之夫,等,2019.胶东金地球化学背景研究[J].黄金科学技术,27(6):791-800.
迟清华,鄢明才,戚长谋,1997.华北地台太古宙主要变质岩的平均化学组成[J].长春地质学院学报,27(2):126-134.
邓军,王庆飞,张良,等,2023.胶东型金矿成因模型[J].中国科学(地球科学),53(10):2323-2347.
豆敬兆,付顺,张华锋,等,2015.胶东郭家岭岩体固结冷却轨迹与隆升剥蚀[J].岩石学报,31(8):2325-2336.
关康,罗镇宽,苗来成,等,1998.胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究[J].地质科学,33(3):318-328.
郭敬辉,陈福坤,张晓曼,等,2005.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石U-Pb年代学[J].岩石学报,21(4):1281-1301.
侯国旺,李红艳,牛之建,等,2017.花岗岩中钾长石巨晶成因及研究方法概述[J].矿区岩石地球化学通报,36(2):345-353.
胡世玲,王松山,桑海清,等,1987.山东玲珑和郭家岭岩体的同位素年龄及其地质意义[J].岩石学报,3(3):38-89.
李士先,刘长春,安郁宏,等,2007.胶东金矿地质[M].北京:地质出版社.
罗贤冬,杨晓勇,段留安,等,2014.胶北地块与金成矿有关的郭家岭岩体和上庄岩体年代学及地球化学研究[J].地质学报,88(10):1874-1888.
吕承训,霍庆龙,唐占信,等,2021.胶西北断裂构造蚀变分带及其铲式分布特征[J].现代地质,35(5):1274-1281.
苗来成,罗镇宽,关康,等,1998.玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义[J].岩石学报,14(2):198-206.
宋明春,伊丕厚,徐军祥,等,2012.胶西北金矿阶梯式成矿模式[J].中国科学:地球科学,42(7):992-1000.
宋明春,李三忠,伊丕厚,等,2014.中国胶东焦家式金矿类型及其成矿理论[J].吉林大学学报(地球科学版),44(1):87-104.
宋明春,李杰,周建波,等,2020.胶东早白垩世高镁闪长岩类的发现及其构造背景[J].岩石学报,36(1):279-296.
宋明春,杨立强,范宏瑞,等,2022.找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展[J].地质通报,41(6):903-935.
宋明春,宋英昕,李杰,等,2023.胶东型金矿热隆—伸展成矿系统[J].岩石学报,39(5):1241-1260.
田瑞聪,李大鹏,张文,等,2022.胶北隆起中生代壳幔岩浆的混合反应是巨量金质来源的关键[J].岩石学报,38(1):23-40.
汪浩,杨立强,王偲瑞,等,2020.胶西北寺庄金矿床红化蚀变过程及其对金成矿贡献[J].岩石学报,36(5):1515-1528.
王斌,宋明春,霍光,等,2021.胶东晚中生代花岗岩的源区性质与构造环境演化及其对金成矿的启示[J].岩石矿物学杂志,40(2):288-320.
王建,朱立新,马生明,等,2020.胶东三山岛北海域金矿床热液蚀变作用研究[J].地质通报,39(11):1807-1826.
王立功,祝德成,郭瑞朋,等,2018.胶西北仓上、三山岛岩体二长花岗岩地球化学、锆石U-Pb年龄及Lu-Hf同位素研究[J].地质学报,92(10):2081-2095.
王世进,万渝生,郭瑞朋,等,2011.鲁东地区玲珑型(超单元)花岗岩的锆石SHRIMP定年[J].山东国土资源,27(4):1-7.
徐洪林,张德全,孙桂英,等,1997.胶东昆嵛山花岗岩的特征、成因及其与金矿的关系[J].岩石矿物学杂志,16(2):131-143.
杨进辉,朱美妃,刘伟,等,2003.胶东地区郭家岭花岗闪长岩的地球化学特征及成因[J].岩石学报,19(4):692-700.
于晓卫,王来明,刘汉栋,等,2021.胶东地区早白垩世郭家岭期花岗岩[J].山东国土资源,37(9):12-25.
翟明国,刘文军,杨进辉,2001.胶东大型黄金矿集区及大规模成矿作用[J].中国科学(D辑),31(7):545-552.
张华锋,李胜荣,翟明国,等,2006.胶东半岛早白垩世地壳隆升剥蚀及其动力学意义[J].岩石学报,22(2):285-295.
钟伶志,毛先成,刘占坤,等,2022.胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J].黄金科学技术,30(3):352-1365.
[1] 刘风龙, 王加恩, 刘远栋, 孙大亥, 程海燕, 胡艳华, 黄雯, 王振, 潘少军. 浙江衢州九华山侵入岩年代学和地球化学特征[J]. 黄金科学技术, 2024, 32(1): 31-40.
[2] 李利, 王国光, 李海立, 肖惠良, 陈乐柱. 赣南印支期白石钨(铜)矿床成矿岩体地球化学特征及地质意义[J]. 黄金科学技术, 2023, 31(5): 736-751.
[3] 张国栋, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿海底开采井下沉降特点及影响因素浅析[J]. 黄金科学技术, 2023, 31(5): 785-793.
[4] 何玉龙, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿地面沉降特征及原因分析[J]. 黄金科学技术, 2023, 31(4): 605-612.
[5] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[6] 范红科,郭根明,董波波,张凯,刘豫新. 新疆焉耆县松树达坂金矿区岩石地球化学异常特征及找矿效果[J]. 黄金科学技术, 2021, 29(4): 477-488.
[7] 赵兴东,曾楠,陈玉民,魏慧,王成龙,侯成录,杜云龙,范纯超. 三山岛金矿井下无人开采区域中深孔落矿嗣后充填连续采矿工艺设计[J]. 黄金科学技术, 2021, 29(2): 200-207.
[8] 王善飞, 王康, 马凤山, 卢蓉. 三山岛金矿“三下”开采工艺优化与灾害防治[J]. 黄金科学技术, 2020, 28(5): 734-742.
[9] 戚伟,李威,李振阳,赵国彦. 基于CRITIC-CW法的地下矿岩体质量评价[J]. 黄金科学技术, 2020, 28(2): 264-270.
[10] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[11] 曹家源,马凤山,郭捷,张国栋,李兆平. 海底倾斜矿体开采沉陷预测研究[J]. 黄金科学技术, 2019, 27(4): 522-529.
[12] 李威,马凤山,卢湘鹏,曹家源,郭捷. 基于三维地震探测的海底矿区地质结构分析[J]. 黄金科学技术, 2019, 27(4): 530-538.
[13] 段学良,马凤山,赵海军,郭捷,顾鸿宇,刘帅奇. 滨海矿山矿坑涌水源识别与混合比研究[J]. 黄金科学技术, 2019, 27(3): 406-416.
[14] 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例[J]. 黄金科学技术, 2019, 27(2): 207-215.
[15] 陈静,胡继春,逯永卓,卢世银,王树林,徐贝贝. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 465-472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!