收稿日期: 2013-05-16
修回日期: 2014-06-27
网络出版日期: 2014-12-24
基金资助
国家“973计划”前期研究专项项目“紧缺资源高效开发关键基础研究”(编号:2012CB724202)资助
Study on Surface Reaction Mechanism of Pyrite in Alkaline Environment
Received date: 2013-05-16
Revised date: 2014-06-27
Online published: 2014-12-24
采用SEM、XPS检测手段和前线轨道理论计算,对碱性环境下的黄铁矿表面反应机理进行研究。结果表明,黄铁矿中的S、Fe、Cu原子由晶格跃迁到表面,并氧化形成硫酸盐、氢氧化物、单质S或S8。随着处理时间的增加,黄铁矿表面氧化产物明显增多,在处理4 h后,黄铁矿表面已经完全被氧化。黄铁矿中Cu原子进入晶格后,改变了HOMO轨道中Fe、S原子电子得失能力(反应活性),但对LUMO轨道的原子性质变化影响不大。在氧化过程中,Fe、S原子更易与氧作用,其次为Cu原子。这也可以解释黄铁矿表面先出现铁、硫化合物,之后才发现有铜的产物的现象。
许涛 , 衷水平 , 殷志刚 . 碱性环境中黄铁矿表面反应机理研究[J]. 黄金科学技术, 2014 , 22(4) : 72 -77 . DOI: 10.11872/j.issn.1005-2518.2014.04.072
The surface mechanism of pyrite in alkaline environment was investigated by SEM,XPS and frontier orbital theory calculation.The results reveal that S,Fe,Cu atoms of pyrite crystal structure shifted into the surface and were oxidized to sulfate,hydroxide and sulphur.The oxidation products on the surface of pyrite increased with processing time.Pyrite surface was totally oxidized after 4 hours.Cu substitution in pyrite crystal structure changed receiving and losing electron between Fe and S atoms in HOMO orbital.As a result,the oxidation of Fe and S atoms are more easily than Cu atom.That may explain the experimental phenomenon that iron and sulfur compounds first appeared and then copper oxidation products are discovered on the pyrite surface.
[1] 覃文庆,龙怀中,邱冠周,等.高碱(石灰)体系中黄铁矿表面性质及其活化[J].有色金属,1996,48(4):35-38,81.
[2] 胡岳华,章顺力,邱冠周.石灰抑制黄铁矿的活化机理研究[J].中南大学学报(自然科学版), 1995,26(2):176-180.
[3] Hu Yuehua,Zhang Shunli,Qiu Guanzhou,et al. Surface chemistry of activation of lime-depressed pyrite in floation[J].Transactions of Nonferrous Metals Society of China,2000,10(6):798-803.
[4] Descostes M,Mercier F,Beaucire C,et al.Nature and distribution of chemical species on oxidized pyrite surface: Complementarity of XPS and nuclear microprobe analysis[C]//NuclearInstruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,Bordeaux,2000.
[5] Descostes M,Mercier F,Thromat N,et al.Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples:constitution of a data basis in binding binding energies for Fe and S reference compounds and appliapplications to the evidence of surface species of an oxidized pyrite in a carbonate medium [J].Applied Surface Science,2000, 165(4):288-302.
[6] Cai Y F,Pan Y G,Xue J Y,et al.Comparative XPS study between experimentally and naturally weathered pyrites[J].Applied Surface Science,2009,255(21):8750-8760.
[7] Demoisson F,Mullet M,Humbert B.Investigation of pyrite oxidation by hexavalent chromium:Solutionspecies and surfacechemistry[J].Journal of Colloid and Interface Science,2007,316(2):531-540.
[8] 邹俭鹏,尹周澜,陈启元,等.机械活化黄铁矿物理性能和表面结构变化的表征[J]. 湖南有色金属,2001,17(5):36-39.
[9] 宋磊,何发钰,孙传尧,等.磨矿介质对黄铁矿表面性质和浮选行为的影响[J]. 有色金属(选矿部分),2007,(1):30-34.
[10] Derycke V,Kongolo M,Benzaazoua M,et al.Surface chemical characterization of different pyrite size fractions for fotation purposes[J].International Journal of Mineral Processing,2013,118:1-14.
[11] 贾建业,谢先德,吴大清,等.常见硫化物表面的XPS研究[J].高校地质学报,2000,6(2):255-259.
[12] 于进喜,刘文礼,姚嘉胤,等.晶体缺陷对黄铁矿表面氧化以及浮选行为的影响[J]. 中国矿业,2013,22(5):88-91.
[13] 杨荣生,陈衍景,谢景林.甘肃阳山金矿床含砷黄铁矿及毒砂的XPS研究[J].岩石学报,2009,25(11):2791-2800.
[14] 王玉明,季寿元,丘第荣.黄铁矿和毒砂XPS谱图上83 eV激发峰的新归因[J].南京大学学报,1996,32(2):281-286.
[15] 卢龙,王汝成,薛纪越,等.黄铁矿表面次生色:氧化程度的标志[J].矿物学报,2002,22(3):211-216.
[16] 刘书杰,何发钰,宋振国.干式磨矿对黄铁矿表面性质及后续浮选的影响[J].有色金属,2009,61(4):109-112.
[17] 傅开彬,林海,莫晓兰,等.不同成因类型黄铜矿细菌浸出钝化[J].中南大学学报(自然科学版),2011,42(11):3245-3250.
[18] 王大刚,范力仁,王圣平,等.黄铁矿作为锂电池正极材料的电化学性能[J].材料导报,2012,26(18):93-96.
[19] Martinez-Magadan J M,Oviedo-Roa R,Garcia P,et al.DFT study of the interaction between ethanethiol and Fe-containing ionic liquids for desulfuration of natural gasoline[J].Fuel Processing Technology,2012,97:24-29.
[20] Chen J H,Wang L,Chen Y,et al.Density functional theory of effects of vacancy defects on electronic structure and flotation of galena[J].The Chinese Journal of Nonferrous Metals,2010,20(9):1815-1821.
/
〈 | 〉 |