收稿日期: 2015-04-22
修回日期: 2015-06-18
网络出版日期: 2015-12-09
基金资助
新疆维吾尔自治区自然科学基金项目“多碱干旱地区矿山膏体充填流变特性与固化性能研究”(编号:201233146-2)资助
Invalidation Risk Evaluation of Backfill Pipe Based on PCA and BP Neural Network
Received date: 2015-04-22
Revised date: 2015-06-18
Online published: 2015-12-09
过江 , 张碧肖 . 基于PCA与BP神经网络的充填管道失效风险评估[J]. 黄金科学技术, 2015 , 23(5) : 66 -71 . DOI: 10.11872/j.issn.1005-2518.2015.05.066
For the sake of covering the shortages for neural network in risk evaluation and eliminating human error and subjective grounds,principal component analysis in statistic and BP neural network were combined and used to constructing the invalidate risk evaluation model of backfill pipe,which couple with a large amount of relative data of mine’s backfill pipe system.The investigations found that the input dimension of neural network were reduced and the relationship of all the indexes were also eliminated through dealing with the original data by means of PCA method,and the contrast of optimized BP neural network and standard BP neural network without principal components analysis turned out the former has outstanding merits of rapid analysis and high accuracy in predicting,meanwhile,the rationality of the model was certified according to the results from simulation test.
[1] 蔡嗣经,王洪江.现代充填理论与技术[M].北京:冶金工业出版社,2012.
[2] 丁明飞,王卓,王大为,等.缓倾斜极薄矿体采矿方法优化方案[J].黄金科学技术,2014,22(6):56-59.
[3] 王力群,孙利,赵志强,等.进路分步放顶采矿方法的研究与应用[J].黄金科学技术,2012,20(6):76-78.
[4] 冯云飞,孟繁博,朱富斌,等.基于灰色层次分析法的长输管道风险评价[J].油气储运,2013,32(12):1289-1294.
[5] 冯巨恩,吴超.深井充填管道失效概率准则的模糊综合评判[J].中南大学学报(自然科学版),2005,36(6):1079-1083.
[6] 郑晶晶,张钦礼,王新民,等.充填管道系统失效模式与影响分析(FMEA)及失效影响模糊评估[J].中国安全科学学报,2009,19(6):166-171.
[7] 朱凯,王正林.精通MATLAB神经网络[M].北京:电子工业出版社,2010.
[8] 冯楠,李敏强,寇纪淞,等.基于人工神经网络的IT项目风险评价模型[J].计算机工程与应用,2006,42(6):24-26.
[9] 孙刘平,钱吴永.基于主成分分析法的综合评价方法的改进[J].数学的实践与认识,2009,39(18):15-20.
[10] Wang J Q,WANG X L.A wear particle identification method by ombining principal component analysis and grey relational nalysis [J].Wear,2013,304(1/2):96-102.
[11] 齐敏芳,付忠广,景源,等.基于信息熵与主成分分析的火电机组综合评价方法[J].中国电机工程学报,2013,33(2):58-64.
[12] 方健,李自品,彭辉,等.基于主成分分析法的 BP 神经网络的应用[J].变压器,2011,48(1):47-51.
[13] 任雪松,于秀林.多元统计分析[M].北京:中国统计出版社,2011:184-231.
[14] 马丽仪,张露凡,杨宜,等.基于模糊神经网络方法的信息系统安全风险评价研究[J].中国安全科学学报,2012,22(5):164-169.
[15] Chen Y,Yi Z C.The BP artificial neural network model on expressway construction phase risk [J].Systems Engineering Procedia,2012,4:409-415.
[16] 李耀武,王新民,赵彬,等.充填钻孔磨损因素分析[J].金属矿山,2008,(6):27-30.
[17] 张德明,王新民,郑晶晶,等.深井充填钻孔内管道磨损机理及成因分析[J].武汉理工大学学报,2010,32(13):100-105.
[18] 郑晶晶,张钦礼,王新民,等.灰关联法用于充填钻孔使用寿命影响因素分析[J].西安科技大学学报,2009,29(6):691-697.
[19] 王华,王连华,葛岭梅.主成分分析与BP神经网络在煤耗氧速度预测中的应用[J].煤炭学报,2008,33(8):920-925.
[20] 张钦礼,周碧辉,王新民,等.充填管道失效风险性预测精度研究[J].中南大学学报(自然科学版),2014,45(8):2805-2811.
/
〈 | 〉 |